|
疏水表面上固着双液滴相互作用的实验研究
|
Abstract:
本文通过实验观察成对液滴在疏水表面上蒸发过程,研究了成对液滴对于液滴蒸发的影响。将一对同样液滴放置在聚二甲基硅氧烷(PDMS)基板上,分析液滴之间的间距对双液滴蒸发造成的影响。实验结果表明,两个液滴之间的距离越小,对蒸发的抑制越强烈,单侧液滴呈现非对称状态,其靠近另一个液滴的一侧受到蒸发抑制明显,并且随着蒸发的进行与分离距离的增加,液滴之间的抑制作用逐渐降低。进一步探究了不同表面上液滴蒸发时间的规律,定义了蒸发速率校正因子K来确定双液滴蒸发的速率及特性。随后还讨论了不同表面上成对液滴蒸发速率校正因子的变化。本文的重点是在临界分离尺度下K (接近单液滴极限)的渐近行为。
The evaporation process of sessile double droplets on hydrophobic surface was observed experimentally, and the effect of sessile double droplets on droplet evaporation was studied. Sessile double droplets are placed on the PDMS substrate. By changing the distance between the two droplets, the influence of the distance between the droplets on the evaporation of the two droplets is analyzed. The experimental results show that the smaller the distance between two droplets, the stronger the inhibition of evaporation. One side of the droplet presents an asymmetric state, and the side close to the other droplet is significantly inhibited by evaporation, and the inhibition between droplets decreases gradually with the progress of evaporation. Then, the experiment further explored the law of droplet evaporation time on different surfaces, and defined the evaporation rate correction factor K to determine the rate and characteristics of double droplet evaporation. The variation of double droplet evaporation rate correction factor on different surfaces is also discussed subsequently. The highlight of this paper is the asymptotic behavior of K (close to the single droplet limit) at the critical separation scale.
[1] | Calvert, P. (2001) Inkjet Printing for Materials and Devices. Chemistry of Materials, 13, 3299-3305.
https://doi.org/10.1021/cm0101632 |
[2] | Srinivasan, V., Pamula, V.K. and Fair, R.B. (2004) An Integrated Digital Microfluidic Lab-on-a-Chip for Clinical Diagnostics on Human Physiological Fluids The Science and Application of Droplets in Microfluidic Devices. Lab on a Chip, 4, 310-315. https://doi.org/10.1039/b403341h |
[3] | Chang, S.T. and Velev, O.D. (2006) Evaporation-Induced Particle Microseparations inside Droplets Floating on a Chip. Langmuir, 22, 1459-1468. https://doi.org/10.1021/la052695t |
[4] | Aleksandrovich, P.V., Dal, V., Sreznevsky, I., Ozhegov, S. and Shvedova, N. (2010) Dmitry Ushakov. General Books LLC. |
[5] | Sreznevski, V.I. (2010) Spisok Russkikh Povremennykh Izdani S 1703 PO 1899 God. BiblioBazaar, Charleston. |
[6] | Whyman, G. and Bormashenko, E. (2009) Oblate Spheroid Model for Calculation of the Shape and Contact Angles of Heavy Droplets. Journal of Colloid and Interface Science, 331, 174-177. https://doi.org/10.1016/j.jcis.2008.11.040 |
[7] | Mangel, R.F. and Baer Jr., E. (1962) The Evaporation of Water Drops from a “Teflon” Surface. Chemical Engineering Science, 17, 705-706. https://doi.org/10.1016/0009-2509(62)85029-5 |
[8] | Picknett, R.G. and Bexon, R. (1977) Evaporation of Sessile or Pendant Drops in Still Air. Journal of Colloid & Interface Science, 61, 336-350. https://doi.org/10.1016/0021-9797(77)90396-4 |
[9] | Chau, T.T., Bruckard, W.J., Koh, P.T.L., et al. (2009) A Review of Factors that Affect Contact Angle and Implications for Flotation Practice. Advances in Colloid and Interface Science, 150, 106-115.
https://doi.org/10.1016/j.cis.2009.07.003 |
[10] | Chandra, S., Marzo, M.D., Qiao, Y.M., et al. (1996) Effect of Liquid-Solid Contact Angle on Droplet Evaporation. Fire Safety Journal, 27, 141-158. https://doi.org/10.1016/S0379-7112(96)00040-9 |
[11] | Dash, S. and Garimella, S.V. (2013) Droplet Evaporation Dynamics on a Superhydrophobic Surface with Negligible Hysteresis. Langmuir, 29, 10785-10795. https://doi.org/10.1021/la402784c |
[12] | Shanahan, M.E.R. and Bourgès, C. (1994) Effects of Evaporation on Contact Angles on Polymer Surfaces. International Journal of Adhesion and Adhesives, 14, 201-205. https://doi.org/10.1016/0143-7496(94)90031-0 |
[13] | Bourgesmonnier, C. and Shanahan, M.E.R. (1995) Influence of Evaporation on Contact Angle. Langmuir, 11, 2820-2829. https://doi.org/10.1021/la00007a076 |
[14] | Erbil, H.Y., McHale, G. and Newton, M.I. (2002) Drop Evaporation on Solid Surfaces: Constant Contact Angle Mode. Langmuir, 18, 2636-2641. https://doi.org/10.1021/la011470p |
[15] | Grandas, L., Reynard, C., Santini, R., et al. (2005) Experimental Study of the Evaporation of a Sessile Drop on a Heat Wall. Wetting Influence. International Journal of Thermal Sciences, 44, 137-146.
https://doi.org/10.1016/j.ijthermalsci.2004.07.002 |
[16] | Bigioni, T.P., Lin, X.M., Nguyen, T.T., et al. (2006) Kinetically Driven Self Assembly of Highly Ordered Nanoparticle Monolayers. Nature Materials, 5, 265-270. https://doi.org/10.1038/nmat1611 |
[17] | Carles, P. and Cazabat, A.M. (1989) Spreading Involving the Marangoni Effect: Some Preliminary Results. Colloids and Surfaces, 41, 97-105. https://doi.org/10.1016/0166-6622(89)80045-9 |
[18] | Cira, N.J., Benusiglio, A. and Prakash, M. (2015) Vapor-Mediated Sensing and Motility in Two-Component Droplets. Nature, 519, 446-450. https://doi.org/10.1038/nature14272 |
[19] | Karpitschka, S., Pandey, A., Lubbers, L.A., et al. (2016) Liquid Drops Attract or Repel by the Inverted Cheerios Effect. Proceedings of the National Academy of Sciences of the United States of America, 113, 7403-7407.
https://doi.org/10.1073/pnas.1601411113 |
[20] | Shaikeea, A.J.D. and Basu, S. (2016) Insight into the Evaporation Dynamics of a Pair of Sessile Droplets on a Hydrophobic Substrate. Langmuir, 32, 1309-1318. https://doi.org/10.1021/acs.langmuir.5b04570 |
[21] | 翁志浩, 方可宁, 单彦广. 不同润湿性表面固着双液滴蒸发过程LBM数值模拟[J]. 建模与仿真, 2021, 10(3): 705-716. https://doi.org/10.12677/MOS.2021.103071 |
[22] | 胡晓玮, 蒋鹤清, 段淑娜, 王晔春, 赵于, 袁越锦. 蒸发液滴内部Marangoni对流的分析与研究[J]. 陕西科技大学学报, 2021, 39(6): 134-140. |
[23] | 葛瑶, 单彦广. 超疏水表面SiO2纳米流体液滴蒸发动力学研究[J]. 塑料工业, 2017, 45(5): 107-111+101. |
[24] | Popov, Y.O. (2004) Evaporative Deposition Patterns Revisited: Spatial Dimensions of the Deposit. Physical Review E, 71, Article ID: 036313. https://doi.org/10.1103/PhysRevE.71.036313 |
[25] | Burns, M.A. (1998) An Integrated Nanoliter DNA Analysis Device. Science, 282, 484-487.
https://doi.org/10.1126/science.282.5388.484 |
[26] | Edwards, C., Arbabi, A., Bhaduri, B., et al. (2015) Measuring the Nonuniform Evaporation Dynamics of Sprayed Sessile Microdroplets with Quantitative Phase Imaging. Langmui, 31, 11020-11032.
https://doi.org/10.1021/acs.langmuir.5b02148 |
[27] | Wu, A.G., Yu, L.H., Li, Z.A., et al. (2004) Atomic force Microscope Investigation of Large-Circle DNA Molecules. Analytical Biochemistry, 325, 293-300. https://doi.org/10.1016/j.ab.2003.11.005 |
[28] | 金艳艳, 单彦广. 水-乙醇二元混合固着液滴的蒸发特性[J]. 化工学报, 2018, 69(7): 111-118. |