|
新能源汽车电池回收中矿产资源的可供性研究
|
Abstract:
我国新能源汽车行业蓬勃发展,从新能源汽车发展速度可见将来每年会因车辆报废而产生大量可回收电池。目前新能源汽车电池回收的技术工艺,操作流程和现状分析是国内外的主要焦点议题,但并未对新能源汽车电池矿产的可供种类、规模等问题进行深入研究。因此,本文运用Stanford模型对新能源汽车动力蓄电池的退役量进行预测,以格林美股份有限公司为研究对象,从财务分析的视角讨论我国新能源电池矿产回收现状。研究结果表明:1) 2012年~2020年,我国新能源汽车产销量不断创新高,与动力电池相关的锂、钴、镍等矿产资源处于极其紧缺状态;2) Stanford模型预测新能源汽车动力电池报废量逐年递增,与现实数据拟合结果较好,说明我国矿产资源回收存在巨大的发展空间。基于上述分析,本文将针对合理开发矿产资源,保障矿产资源供给等方面提出相关建议。
With the rapid development of new energy automobile industry in China, a large number of recyclable batteries will be produced every year due to vehicle scrapping. At present, the technical process, operation flow and status analysis of new energy vehicle battery recycling are the main focus issues domestic and overseas, but the available types and scale of new energy vehicle battery mineral resources have not been studied in depth. Therefore, this paper uses Stanford model to predict the retirement amount of new energy vehicle battery, and takes GEM Co., Ltd. as the research object, discusses the present situation of new energy battery mineral resources recovery in China from the perspective of financial analysis. The results show that: 1) From 2012 to 2020, the output and sales of new energy vehicles in China reached a new high, and the mineral resources such as lithium, cobalt and nickel related to power batteries were in extremely short supply; 2) The Stanford Model predicts that the scrap of power battery of new energy vehicle is increasing year by year, and the results fit well with the actual data, which shows that there is a huge development space for mineral resources recovery in China. Based on the above analysis, this paper will put forward some suggestions on the rational development of mineral resources and the supply of mineral resources.
[1] | 何朋蔚, 王昶, 左绿水, 等. 基于废弃手机的高技术矿产可供性研究[J]. 资源科学, 2018, 40(3): 589-599. |
[2] | Fthenakis, V. (2009) Sustainability of Photovoltaics: The Case for Thin-Film Solar Cells. Renewable and Sustainable Energy Reviews, 13, 2746-2750. https://doi.org/10.1016/j.rser.2009.05.001 |
[3] | Huston, D.L. (2014) New Age Metals: The Geology and Genesis of Ores Required for a Changing Economy and a Carbon-Constrained World-Preface to a Thematic Issue on Critical Commodities. Mineralium Deposita, 49, 885-887.
https://doi.org/10.1007/s00126-014-0555-y |
[4] | 柴炳文, 尹华, 魏强, 等. 电子废物拆解区微塑料与周围土壤环境之间的关系[J]. 环境科学, 2021, 42(3): 1073-1080. |
[5] | 郭贯成, 崔久富, 李学增. 全民所有自然资源资产“三权分置”产权体系研究——基于委托代理理论的视角[J]. 自然资源学报, 2021, 36(10): 2684-2693. |
[6] | 王自国. 国内外锂资源开发现状及产业发展预测[J]. 中国煤炭地质, 2021, 33(S1): 52-55. |
[7] | 李雨芹. 磷酸铁锂电池在电动汽车中的应用与回收[J]. 化工管理, 2019(1): 61-62. |
[8] | 姚美娇. “混搭模式”成为动力电池系统新风向[N]. 中国能源报, 2021-10-25(010). |
[9] | 张正洁, 杨金侠. 废锂离子电池的资源化回收方法[J]. 有色矿冶, 2005(6): 46-47. |
[10] | 王立功. 电动汽车废锂离子电池的回收利用研究进展[J]. 金属功能材料, 2021, 28(4): 95-98. |
[11] | 李旭, 熊勇清. 新能源汽车“双积分”政策影响的阶段性特征——经营与环境双重绩效视角[J]. 资源科学, 2021, 43(1): 1-11. |
[12] | 李震彪, 黎宇科. 我国新能源汽车动力蓄电池退役量预测[J]. 资源再生, 2018(9): 34-36. |
[13] | 《中国能源》编辑部. 实现“碳达峰碳中和”需遵循科学规律[J]. 中国能源, 2021, 43(5): 1-2. |
[14] | 刘娟, 兰建义. 新能源汽车电池回收研究及发展建议[J]. 中国集体经济, 2020(28): 60-63. |