全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络药理学和分子对接探索半夏厚朴汤、四逆散和越鞠丸“同病异治”抑郁症的作用机制
Based on Network Pharmacology and Molecular Docking to Explore the Mechanisms of Banxiahoupo Decoction, Sini Powder and Yueju Pill in the Treatment of Depression by “Same Disease with Different Treatments”

DOI: 10.12677/PI.2022.113021, PP. 168-181

Keywords: 网络药理学,分子对接,抑郁症,同病异治
Network Pharmacology
, Molecular Docking, Depression, Same Disease with Different Treatments

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:本文通过网络药理学和分子对接技术探索半夏厚朴汤、四逆散和越鞠丸“同病异治”抑郁症的作用机制。方法:通过TCMSP和BATMAN-TCM数据库整理半夏厚朴汤、四逆散和越鞠丸的活性成分和靶点信息,联合GSE87610生物芯片和PharmGKB、DrugBank、OMIM、TTD、GeneCards五个疾病数据收集抑郁症靶点。利用Cytoscape3.8.0构建“活性成分–药物靶点”互作网络,筛选重要成分和关键靶点;基于Venny2.1.0获取三种复方和抑郁症的共同靶点,使用String在线分析工具获取蛋白质互作网络图,采用DAVID在线数据库对核心靶点进行GO富集和KEGG信号通路分析。筛选“活性成分–药物靶点”互作网络中Degree排名前五的活性成分和三种中药复方和抑郁症共有靶点PPI排名前五的靶点分别作为配体和受体,用PyMol、Autodock和Vina软件对活性成分和蛋白质进行分子对接。结果:半夏厚朴汤中有效成分192个、潜在靶点1544个,四逆散中有效成分275个、潜在靶点1442个,越鞠丸中有效成分177个、潜在靶点1364个,抑郁症靶点1337个,得到三种中药复方和抑郁症共有靶点347个。KEGG信号通路分析共获得153条,涉及神经活性配体–受体相互作用、癌症的途径cAMP信号通路、钙信号通路、PI3K-Akt信号通路等。筛选得到的活性成分为黄连碱、槲皮素、壬酸、棕榈酸和缬氨酸;关键靶点为AKT1、INS、TP53、IL6和TNF;对接结果显示五种活性成分和五种蛋白均具有较好的结合能力。结论:半夏厚朴汤、四逆散和越鞠丸三种复方存在着相同和不同的抗郁成分和靶点,通过分析靶点和通路,加以分子对接技术辅助验证结合活性,初步阐明三者“同病异治”抑郁症的科学内涵。
Objective: Based on network pharmacology and molecular docking to explore the mechanisms of Banxiahoupo Decoction, Sini Powder and Yueju Pill treating depression with “Same Disease with Different Treatments”. Methods: The active ingredients and target information of Banxiahoupo Decoction, Sini Powder and Yueju Pill were sorted by TCMSP and BATMAN-TCM database, and depression targets were collected by combining GSE87610 chip and PharmGKB, DrugBank, OMIM, TTD and GeneCards. Use Cytoscape3.8.0 to draw the interaction network of “active ingredients-drug targets”, then screen important ingredients and key targets. Venny2.1.0 was used to get the common target of three kinds of compound prescription and depression, PPI was drawn by String online analysis tool, and GO enrichment and KEGG signal pathway analysis were carried out on the key targets by DAVID online database. Screening the top five active ingredients in the “active ingredient-drug target” interaction network and the top five targets in PPI, which are common targets of three traditional Chinese medicine compounds and depression, as ligands and receptors respectively. Use PyMol, Autodock and Vina software for molecular docking of active ingredients and protein. Results: There were 192 active ingredients and 1544 potential targets in Banxiahoupo Decoction, 275 active ingredients and 1442 potential targets in Sini Powder, 177 active ingredients and 1364 potential targets in Yueju Pill, and 1337 targets in depression. There were 347 targets shared by three traditional Chinese medicine compounds and depression. A total of 153 KEGG signal paths were obtained, which involved neuroactive ligand-receptor interaction, cAMP signaling pathway, calcium signaling pathway, PI3K-Akt signaling pathway and so

References

[1]  劳咏锋, 康随芳, 姜彦彪, 潘铭昊, 胡榕, 范艳琴, 杨艳芬. 20年国内抑郁症机制研究领域的现状及热点分析[J]. 中国校医, 2020, 34(8): 570-572.
[2]  朱智羽, 郭闫葵. 中医辨证下的抑郁症病因病机及治疗概述[J]. 中医药临床杂志, 2019, 31(4): 788-791.
[3]  Chen, J.J. (2021) Diagnosis, Mechanism, and Current Treatment of Depression: Current Situation and Future Directions. International Journal of Pharma Medicine and Biological Sciences, 10, 125-127.
https://doi.org/10.18178/ijpmbs.10.3.125-129
[4]  李亚慧, 赵红霞, 高蕊. 中医郁证病名解析[J]. 中国中医基础医学杂志, 2020, 26(4): 430-432.
[5]  郑若韵. 基于《黄帝内经》运气理论的三因司天方治疗抑郁症的实验研究[D]: [硕士学位论文]. 北京: 北京中医药大学, 2020.
[6]  杨涛, 刘成海. 基于代谢组学的扶正化瘀方抗肝纤维化差异疗效机制研究探讨[J]. 世界中医药, 2014, 9(5): 549-552+556.
[7]  赵玉男, 谢伟东, 邢东明, 余煊, 杜力军. 中药有效成分作用靶点研究的策略与实践[J]. 世界科学技术-中医药现代化, 2016, 18(6): 1005-1011.
[8]  王秋红, 苏阳, 王荔慧, 王长福, 付新, 吴伦, 匡海学. 六神曲中真菌的分离与鉴定[J]. 中国实验方剂学杂志, 2014, 20(7): 122-127.
[9]  文庆, 田侃, 陆超, 王圣鸣. 中医药介入新冠肺炎的防治及启示[J]. 南京医科大学学报(社会科学版), 2021, 21(2): 149-153.
[10]  毛梦迪, 尚立芝, 许二平. 半夏厚朴汤治疗抑郁症研究进展[J]. 中国实验方剂学杂志, 2020, 26(23): 37-43.
[11]  Jia, K.-K., et al. (2017) Banxia-Houpu Decoction Restores Glucose Intol-erance in CUMS Rats through Improvement of Insulin Signaling and Suppression of NLRP3 Inflammasome Activation in Liver and Brain. Journal of Ethnopharmacology, 209, 219-229.
https://doi.org/10.1016/j.jep.2017.08.004
[12]  卢鑫, 张馨月, 林逸婷, 张涛, 赖冬萍. 基于网络药理学——分子对接探讨四逆散“异病同治”溃疡性结肠炎和肠易激综合征的作用机制[J/OL]. 中药药理与临床, 1-25.
https://doi.org/10.13412/j.cnki.zyyl.20210806.010, 2021-10-09.
[13]  Wei, S.-S., et al. (2016) Traditional Herbal Formula Sini Powder Extract Produces Antidepressant-Like Effects through Stress-Related Mechanisms in Rats. Chinese Journal of Natural Medicines, 14, 590-598.
https://doi.org/10.1016/S1875-5364(16)30069-3
[14]  张洁, 金玫. 血府逐瘀汤合越鞠丸加减治疗气滞血瘀型冠心病稳定性心绞痛合并焦虑临床疗效[J]. 北京中医药, 2021, 40(7): 765-769.
[15]  Wang, W., et al. (2019) NMDA Receptors and L-Arginine/Nitric Oxide/Cyclic Guanosine Monophosphate Pathway Contribute to the Antide-pressant-Like Effect of Yueju Pill in Mice. Bioscience Reports, 39, BSR20190524.
https://doi.org/10.1042/BSR20190524
[16]  Gao, Y., Mu, J., Xu, T., Linghu, T., Zhao, H., Tian, J. and Qin, X. (2021) Metabolomic Analysis of the Hippocampus in a Rat Model of Chronic Mild Unpredictable Stress-Induced De-pression Based on a Pathway Crosstalk and Network Module Approach. Journal of Pharmaceutical and Biomedical Analysis, 193, Article ID: 113755.
https://doi.org/10.1016/j.jpba.2020.113755
[17]  韩亚琼, 李涛, 谷争, 陈永新. 红景天苷对抑郁模型大鼠炎症反应和神经细胞凋亡的抑制作用及其机制[J]. 医药导报, 2021, 40(5): 598-605.
[18]  韩羽楠, 王振宇. 锌与cAMP/PKA-CREB-BDNF信号通路在抑郁症发病机制中的相关性[J]. 解剖科学进展, 2013, 19(2): 167-170.
[19]  刘昊. 基于网络药理学从PI3K/Akt通路研究疏肝和胃汤的抗抑郁作用机制[D]: [硕士学位论文]. 武汉: 湖北中医药大学, 2021.
[20]  白天山, 李志榕, 黄平, 徐烨, 柳文华. 文拉法辛对抑郁模型大鼠抑郁症状的改善作用及对海马组织PI3K/Akt/mTORC1信号通路的影响[J]. 中西医结合心脑血管病杂志, 2021, 19(14): 2348-2352.
[21]  张铭珈. 基于PI3K/Akt/mTOR自噬信号通路探讨四逆散抗皮质酮致海马神经元细胞损伤的作用机制[D]: [博士学位论文]. 广州: 广州中医药大学, 2019.
[22]  纪雅菲, 芮翊馨, 方洋, 曾九僧, 胡靖文, 刘蓉, 曾南. 基于IGF-1 Rβ/PI3K/Akt信号通路逍遥散正丁醇部位的抗抑郁作用[J/OL]. 中国实验方剂学杂志, 2021, 27(14): 1-17.
https://doi.org/10.13422/j.cnki.syfjx.20211303, 2021-10-10.
[23]  吴明权, 周许, 彭伟, 朱力阳, 涂禾. 基于网络药理学研究黄连–吴茱萸干预抑郁症的作用机制[J]. 中国医院用药评价与分析, 2021, 21(2): 134-138+142.
[24]  郭花玲, 崔瑛, 李阳阳, 李二平, 韩强, 朱杨杨. 黄连对小鼠焦虑行为影响的研究[J]. 中国实验方剂学杂志, 2011, 17(15): 169-172.
[25]  邹宗尧, 王燕枝, 胡慭然, 夏爽, 王德珍, 庞婕, 李学刚. 黄连生物碱促小鼠睡眠实验研究[J]. 中国药理学通报, 2014, 30(12): 1752-1756.
[26]  Zou, H.Y., et al. (2021) A Review on Pharmacological Activities and Synergistic Effect of Quercetin with Small Molecule Agents. Phytomedicine, 92, Article ID: 153736.
https://doi.org/10.1016/j.phymed.2021.153736
[27]  Alzohairy, M.A., et al. (2021) Protective Effect of Quercetin, a Flavonol against Benzo(a)pyrene-Induced Lung Injury via Inflammation, Oxidative Stress, Angiogenesis and Cyclooxygenase-2 Signalling Molecule. Applied Sciences, 11, 8675-8675.
https://doi.org/10.3390/app11188675
[28]  杨颖, 王芸芸, 蒋琦辰. 槲皮素药理作用的研究进展[J]. 特种经济动植物, 2020, 23(5): 24-28.
[29]  马纳, 李亚静, 范吉平. 槲皮素药理作用研究进展[J]. 辽宁中医药大学学报, 2018, 20(8): 221-224.
[30]  Mehta, V., Parashar, A. and Udayabanu, M. (2017) Quercetin Prevents Chronic Unpre-dictable Stress Induced Behavioral Dysfunction in Mice by Alleviating Hippocampal Oxidative and Inflammatory Stress. Physiology & Behavior, 171, 69-78.
https://doi.org/10.1016/j.physbeh.2017.01.006
[31]  Guan, Y.C., et al. (2021) Quercetin Reverses Chronic Unpredictable Mild Stress-Induced Depression-Like Behavior in Vivo by Involving Nuclear Factor-E2-Related Factor 2. Brain Research, 1772, Article ID: 147661.
https://doi.org/10.1016/j.brainres.2021.147661
[32]  Jiang, Y.M., Li, X.J., Meng, Z.Z., Liu, Y.Y., Zhao, H.B., Li, N., Yan, Z.Y., Ma, Q.Y., Zhang, H.T. and Chen, J.X. (2016) Effects of Xiaoyaosan on Stress-Induced Anxiety-Like Behavior in Rats: Involvement of CRF1 Receptor. Evidence-Based Complementary and Alternative Medicine, 2016, Ar-ticle ID: 1238426.
https://doi.org/10.1155/2016/1238426

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133