|
Src蛋白酪氨酸激酶抑制剂在骨质疏松症中的研究进展
|
Abstract:
骨质破坏发生在衰老和许多疾病中,其中最常见的是骨质疏松。骨质疏松症(Osteoporosis, OP)是中国中老年患者最常见且发病率高的全身代谢性骨病,其发生是多种因素造成人体骨密度及骨质量下降,骨骼微小结构破坏,骨骼易脆性增高,导致老年人更容易在日常活动中发生骨折。Src蛋白酪氨酸激酶抑制剂能够抑制Src蛋白酪氨酸激酶活性,对于骨质疏松的靶向治疗具有精准、稳定性强、副作用小,可直接进入病灶、无明显毒副作用等特点。本文就Src蛋白酪氨酸激酶抑制剂在骨质疏松症中的研究进展做一综述。
Bone destruction occurs with aging and in many diseases, the most common of which is osteoporo-sis. Osteoporosis (OP) is a kind of systemic metabolic bone disease with high incidence as a common disease in middle-aged and elderly patients in China. Its occurrence is caused by a variety of factors resulting in the reduction of bone density and bone mass of the human body, the destruction of bone micro-structure, resulting in increased brittleness of the bone, resulting in the elderly more prone to fracture in daily activities. Src protein tyrosine kinase inhibitor can inhibit the activity of Src protein tyrosine kinase. It has the characteristics of precision, low side effects, strong stability, direct access to the focus and no obvious toxic and side effects for the targeted treatment of osteo-porosis. Now we review the research progress of SRC protein tyrosine kinase inhibitors in the treatment of osteoporosis.
[1] | Yoo, J.I., Ha, Y.C., Won, Y.Y., et al. (2017) Fracture Preventing Effects of Maxmarvil? Tablets (Alendronate 5 mg + Calcitriol 0.5 μg) in Patients with Osteoporosis. Journal of Bone Metabo-lism, 24, 91-96.
https://doi.org/10.11005/jbm.2017.24.2.91 |
[2] | Jin, S.S., He, D.Q., Luo, D., et al. (2019) A Biomimetic Hierar-chical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment to Promote Endog-enous Bone Regeneration. ACS Nano, 13, 6581-6595.
https://doi.org/10.1021/acsnano.9b00489 |
[3] | Bruno, F., Carboni, N., Palumbo, P., et al. (2021) O2-O3 Che-modiscolysis: How Much, How Long? Retrospective Outcome Evaluation of Different Treatment Sessions in Partial-ly-Responder Patients. Interventional Neuroradiology, 23, 444-450. https://doi.org/10.1177/1591019917703784 |
[4] | Guo, L., Han, J., Guo, H., et al. (2019) Pathway and Network Analysis of Genes Related to Osteoporosis. Molecular Medicine Reports, 20, 985-994. https://doi.org/10.3892/mmr.2019.10353 |
[5] | Levaot, N., Simoncic, P.D., Dimitriou, I.D., et al. (2011) 3BP2-Deficient Mice Are Osteoporotic with Impaired Osteoblast and Osteoclast Functions. Journal of Clinical Investi-gation, 121, 3244-3257. https://doi.org/10.1172/JCI45843 |
[6] | Nishioku, T., Kubo, T., Kamada, T., et al. (2020) (-)-Epigallocatechin-3-Gallate Inhibits RANKL-Induced Osteoclastogenesis via Downregulation of NFATc1 and Sup-pression of HO-1-HMGB1-RAGE Pathway. Biomedical Research, 41, 269-277. https://doi.org/10.2220/biomedres.41.269 |
[7] | Xie, Y., Gao, Y., Zhang, L., et al. (2018) Involvement of Se-rum-Derived Exosomes of Elderly Patients with Bone Loss in Failure of Bone Remodeling via Alteration of Exosomal Bone-Related Proteins. Aging Cell, 17, e12758.
https://doi.org/10.1111/acel.12758 |
[8] | Faltermeier, C.M., Drake, J.M., Clark, P.M., et al. (2016) Functional Screen Identifies Kinases Driving Prostate Cancer Visceral and Bone Metastasis. Proceedings of the National Academy of Sciences of the United States of America, 113, E172-E181. https://doi.org/10.1073/pnas.1521674112 |
[9] | Huang, Y., Li, Y., Zhong, X., et al. (2017) SRC-Family Kinases Activation in Spinal Microglia Contributes to Central Sensitiza-tion and Chronic Pain after Lumbar Disc Herniation. Molecular Pain, 13.
https://doi.org/10.1177/1744806917733637 |
[10] | Bagnato, G., Leopizzi, M., Urciuoli, E., et al. (2020) Nuclear Functions of the Tyrosine Kinase Src. International Journal of Molecular Sciences, 21, 2675. https://doi.org/10.3390/ijms21082675 |
[11] | Szilveszter, K.P., Nemeth, T. and Mocsai, A. (2019) Tyrosine Kinases in Autoimmune and Inflammatory Skin Diseases. Frontiers in Immunology, 10, Article No. 1862. https://doi.org/10.3389/fimmu.2019.01862 |
[12] | Antonarakis, E.S., Heath, E.I., Posadas, E.M., et al. (2013) A Phase 2 Study of KX2-391, an Oral Inhibitor of Src Kinase and Tubulin Polymerization, in Men with Bone-Metastatic Castration-Resistant Prostate Cancer. Cancer Chemotherapy and Pharmacology, 71, 883-892. https://doi.org/10.1007/s00280-013-2079-z |
[13] | Liu, L., Zhu, Q., Wang, J., et al. (2015) Gene Expression Changes in Human Mesenchymal Stem Cells from Patients with Osteoporosis. Molecular Medicine Reports, 12, 981-987. https://doi.org/10.3892/mmr.2015.3514 |
[14] | Sapkota, M., Li, L., Kim, S.W., et al. (2018) Thymol Inhibits RANKL-Induced Osteoclastogenesis in RAW264.7 and BMM Cells and LPS-Induced Bone Loss in Mice. Food and Chemical Toxicology, 120, 418-429.
https://doi.org/10.1016/j.fct.2018.07.032 |
[15] | 王琴, 刘力, 乐意, 等. Src激酶抑制剂研究进展[J]. 中国药物化学杂志, 2021, 31(4): 312-319. |
[16] | Botter, S.M., Neri, D. and Fuchs, B. (2014) Recent Advances in Osteosarcoma. Current Opinion in Pharmacology, 16, 15-23. https://doi.org/10.1016/j.coph.2014.02.002 |
[17] | Heusschen, R., Muller, J., Binsfeld, M., et al. (2016) SRC Kinase Inhibition with Saracatinib Limits the Development of Osteolytic Bone Disease in Multiple Myeloma. Oncotarget, 7, 30712-30729.
https://doi.org/10.18632/oncotarget.8750 |
[18] | Cao, H., Lei, S., Deng, H.W., et al. (2012) Identification of Genes for Complex Diseases Using Integrated Analysis of Multiple Types of Genomic Data. PLoS ONE, 7, e42755. https://doi.org/10.1371/journal.pone.0042755 |
[19] | Chen, H., Fang, C., Zhi, X., et al. (2020) Neobavaisoflavone Inhibits Osteoclastogenesis through Blocking RANKL Signalling-Mediated TRAF6 and c-Src Recruitment and NF-κB, MAPK and Akt Pathways. Journal of Cellular and Molecular Medicine, 24, 9067-9084. https://doi.org/10.1111/jcmm.15543 |
[20] | Nuche-Berenguer, B., Ramos-álvarez, I. and Jensen, R.T. (2016) SRC Kinases Play a Novel Dual Role in Acute Pancreatitis Affecting Severity But No Role in Stimulated Enzyme Secretion. The American Journal of Physiology- Gastrointestinal and Liver Physiology, 310, G1015-G1027. https://doi.org/10.1152/ajpgi.00349.2015 |
[21] | Lee, J., Son, H.S., Lee, H.I., et al. (2019) Skullcapflavone II Inhibits Osteoclastogenesis by Regulating Reactive Oxygen Species and Attenuates the Survival and Resorption Function of Os-teoclasts by Modulating Integrin Signaling. FASEB Journal, 33, 2026-2036. https://doi.org/10.1096/fj.201800866RR |
[22] | Takeshita, S., Fumoto, T., Ito, M., et al. (2018) Serum CTX Levels and Histomorphometric Analysis in SRC versus RANKL Knockout Mice. Journal of Bone and Mineral Metabolism, 36, 264-273.
https://doi.org/10.1007/s00774-017-0838-3 |
[23] | Brar, K.S. (2010) Prevalent and Emerging Therapies for Osteo-porosis. Medical Journal Armed Forces India, 66, 249- 254. https://doi.org/10.1016/S0377-1237(10)80050-4 |
[24] | Huang, Y., Ren, K., Yao, T., et al. (2020) MicroRNA-25-3p Regulates Osteoclasts through Nuclear Factor IX. Biochemical and Biophysical Research Communications, 522, 74-80. https://doi.org/10.1016/j.bbrc.2019.11.043 |
[25] | Stone, J.A., McCrea, J.B., Witter, R., et al. (2019) Clinical and Translational Pharmacology of the Cathepsin K Inhibitor Odanacatib Studied for Osteoporosis. British Journal of Clinical Pharmacology, 85, 1072-1083.
https://doi.org/10.1111/bcp.13869 |
[26] | Hannon, R.A., Clack, G., Rimmer, M., et al. (2010) Effects of the SRC Ki-nase Inhibitor Saracatinib (AZD0530) on Bone Turnover in Healthy Men: A Randomized, Double-Blind, Place-bo-Controlled, Multiple-Ascending-Dose Phase I Trial. Journal of Bone and Mineral Research, 25, 463-471. https://doi.org/10.1359/jbmr.090830 |
[27] | Lotinun, S., Ishihara, Y., Nagano, K., et al. (2019) Cathepsin K-Deficient Osteocytes Prevent Lactation-Induced Bone Loss and Parathyroid Hormone Suppression. Journal of Clinical Investiga-tion, 129, 3058-3071.
https://doi.org/10.1172/JCI122936 |
[28] | Gavali, S., Gupta, M.K., Daswani, B., et al. (2019) LYN, a Key Mediator in Estrogen-Dependent Suppression of Osteoclast Differentiation, Survival, and Function. Biochimica et Biophysica Ac-ta—Molecular Basis of Disease, 1865, 547-557. https://doi.org/10.1016/j.bbadis.2018.12.016 |
[29] | Portal-Nú?ez, S., Ardura, J.A., Lozano, D., et al. (2018) Parathyroid Hormone-Related Protein Exhibits Antioxidant Features in Osteo-blastic Cells through Its N-terminal and Osteostatin Domains. Bone & Joint Research, 7, 58-68.
https://doi.org/10.1302/2046-3758.71.BJR-2016-0242.R2 |
[30] | Qiao, Q., Song, Y.L. and Li, F.L. (2018) Sema-phorin 3A-Stimulated Bone Marrow Mesenchymal Stem Cells Sheets Promotes Osteogenesis of Type 2 Diabetic Rat. Chinese Journal of Stomatology, 53, 333-338. |
[31] | Christiansen, A.R., Lipshultz, L.I., Hotaling, J.M., et al. (2020) Se-lective Androgen Receptor Modulators: The Future of Androgen Therapy? Translational Andrology and Urology, 9, S135-S148. https://doi.org/10.21037/tau.2019.11.02 |
[32] | Kobayakawa, M., Matsubara, T., Mizokami, A., et al. (2020) Kif1c Regulates Osteoclastic Bone Resorption as a Downstream Molecule of p130Cas. Cell Biochemistry and Function, 38, 300-308. https://doi.org/10.1002/cbf.3476 |
[33] | Br?mme, D., Panwar, P. and Turan, S. (2016) Ca-thepsin K Osteoporosis Trials, Pycnodysostosis and Mouse Deficiency Models: Commonalities and Differences. Expert Opinion on Drug Discovery, 11, 457-472.
https://doi.org/10.1517/17460441.2016.1160884 |
[34] | Zheleznyak, A., Mixdorf, M., Marsala, L., et al. (2021) Or-thogonal Targeting of Osteoclasts and Myeloma Cells for Radionuclide Stimulated Dynamic Therapy Induces Multidi-mensional Cell Death Pathways. Theranostics, 11, 7735- 7754. https://doi.org/10.7150/thno.60757 |
[35] | 王群. 新形势下我国社会保障面临的新问题及应对——基于第七次全国人口普查数据的分析[J]. 重庆行政(公共论坛), 2021(6): 105-106. |
[36] | Qaseem, A., Forciea, M.A., McLean, R.M., et al. (2017) Treatment of Low Bone Densi-ty or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update from the American College of Physicians. Annals of Internal Medicine, 166, 818-839. https://doi.org/10.7326/M15-1361 |
[37] | Ferrari, S., Eastell, R., Napoli, N., et al. (2020) Denosumab in Postmenopausal Women with Osteoporosis and Diabetes: Sub-group Analysis of FREEDOM and FREEDOM Extension. Bone, 134, Article ID: 115268.
https://doi.org/10.1016/j.bone.2020.115268 |
[38] | Clemens, K.K., Jeyakumar, N., Ouedraogo, A.M., et al. (2020) Bisphosphonate and Denosumab Initiation in Older Adults in Ontario, Canada: A Population-Based Cohort Study. Ar-chives of Osteoporosis, 15, 133.
https://doi.org/10.1007/s11657-020-00796-3 |
[39] | Pang, K.L., Low, N.Y. and Chin, K.Y. (2020) A Review on the Role of Denosumab in Fracture Prevention. Drug Design, Development and Therapy, 14, 4029-4051. https://doi.org/10.2147/DDDT.S270829 |
[40] | Rucci, N., Susa, M. and Teti, A. (2008) Inhibition of Protein Kinase c-SRC as a Therapeutic Approach for Cancer and Bone Metas-tases. Anti-Cancer Agents in Medicinal Chemistry, 8, 342-349.
https://doi.org/10.2174/187152008783961905 |
[41] | Drake, M.T., Clarke, B.L., Oursler, M.J., et al. (2017) Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned. Endocrine Reviews, 38, 325-350. https://doi.org/10.1210/er.2015-1114 |