全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于电化学生物传感器检测有机磷农药的应用进展
Detection of Organophosphorus Pesticides Based on Electrochemical Biosensor: Application Progress

DOI: 10.12677/AAC.2022.122011, PP. 76-84

Keywords: 有机磷农药,电化学生物传感器,食品安全检测
Organophosphorus Pesticides
, Electrochemical Biosensor, Food Safety Testing

Full-Text   Cite this paper   Add to My Lib

Abstract:

有机磷农药应用广泛,残留率高,对人体健康有严重危害,其残留检测技术的发展有着重要的科学研究意义。传统检测方法价格昂贵、复杂且耗时,而基于电化学生物传感器检测有机磷农药简单、快速、便携、高效且有广泛的应用。本文主要综述介绍近五年基于电化学生物传感器检测有机磷农药的种类、原理,将不同类型传感器性能进行对比,分析传感器优点和局限性,对其发展方向进行展望。
Organophosphorus pesticides are widely used. But it does serious harm to human health due to its high residual rate. Therefore, it’s of scientific significance to develop the residual detection technology. Traditional detection methods, such as AA, BB and CC, are expensive, complicated and time-consuming. Detection methods based on electrochemical biosensors are simple, fast, portable, efficient and widely used. This paper mainly introduces the types and principles of detecting organophosphorus pesticides based on electrochemical biosensors in the past five years. Performance of different types of sensors is compared, as well as the advantages, limitations, and prospects of its development.

References

[1]  Kermani, M., Dowlati, M., Gholami, M., Sobhi, H.R., Azari, A., Esrafili, A., Yeganeh, M. and Ghaffari, H.R. (2021) A Global Systematic Review, Meta-Analysis and Health Risk Assessment on the Quantity of Malathion, Diazinon and Chlorpyrifos in Vegetables. Chemosphere, 270, Article ID: 129382.
https://doi.org/10.1016/j.chemosphere.2020.129382
[2]  Kaushal, J., Khatri, M. and Arya, S.K. (2021) A Treatise on Organophosphate Pesticide Pollution: Current Strategies and Advancements in Their Environmental Degradation and Elimination. Ecotoxicology and Environmental Safety, 207, Article ID: 111483.
https://doi.org/10.1016/j.ecoenv.2020.111483
[3]  Philippe, V., Neveen, A., Marwa, A. and Basel, A.A. (2021) Occurrence of Pesticide Residues in Fruits and Vegetables for the Eastern Mediterranean Region and Potential Impact on Public Health. Food Control, 119, Article ID: 107457.
https://doi.org/10.1016/j.foodcont.2020.107457
[4]  Freyre, E.O., Valencia, A.T., Guzman, D.D., Maldonado, I.C., Ledezma, L.E.B., Carrillo, M.F.Z. and Escorza, M.A.Q. (2021) Oxidative Stress as a Molecular Mechanism of Exposure to Organophosphorus Pesticides: A Review. Current Protein & Peptide Science, 22, 890-897.
https://doi.org/10.2174/1389203722666211122092309
[5]  Mukherjee, S. and Gupta, R. (2020) Organophosphorus Nerve Agents: Types, Toxicity, and Treatments. Journal of Toxicology, 2020, Article ID: 3007984.
https://doi.org/10.1155/2020/3007984
[6]  Javeres, M.N.L., Habib, R., Laure, N.J., Shah, S.T.A., Valis, M., Kuca, K. and Nurulain, S.M. (2021) Chronic Exposure to Organophosphates Pesticides and Risk of Metabolic Disorder in Cohort from Pakistan and Cameroon. International Journal of Environmental Research and Public Health, 18, 2301.
https://doi.org/10.3390/ijerph18052310
[7]  Nkosinathi, B., Pragalathan, N. and Saloshni, N. (2020) Association between Pesticide Exposure and Paraoxonase-1 (PON1) Polymorphisms, and Neurobehavioural Outcomes in Children: A Systematic Review. Systematic Reviews, 9, 109-109.
https://doi.org/10.1186/s13643-020-01330-9
[8]  Rahman, M.M., Lee, D.J., Jo, A., Yun, S.H., Eun, J.B., Im, M.H., Shim, J.H. and Abd El-Aty, A.M. (2021) Onsite/On-Field Analysis of Pesticide and Veterinary Drug Residues by a State-of-Art Technology: A Review. Journal of Separation Science, 44, 2310-2327.
https://doi.org/10.1002/jssc.202001105
[9]  Chen, G.B. and Wang, P.E. (2020) Electroanalytical Methods for Detecting Pesticides in Agricultural Products: A Review and Recent Developments. International Journal of Electrochemical Science, 15, 2700-2712. http://www.electrochemsci.org/abstracts/vol15/150302700.pdf
https://doi.org/10.20964/2020.03.35
[10]  Hu, H.Y. and Yang, L.Q. (2020) Development of Enzymatic Electrochemical Biosensors for Organophosphorus Pesticide Detection. Journal of Environmental Science and Health Part B—Pesticides Food Contaminants and Agricultural Wastes, 56, 168-180.
https://doi.org/10.1080/03601234.2020.1853460
[11]  Niu, K., Gao, J., Wu, L.X., Lu, X.B. and Chen, J.P. (2021) Nitrogen-Doped Graphdiyne as a Robust Electrochemical Biosensing Platform for Ultrasensitive Detection of Environmental Pollutants. Analytical Chemistry, 93, 8656-8662.
https://doi.org/10.1021/acs.analchem.1c01800
[12]  Dong, S.Y., Zhang, J., Huang, G.Q., Wei, W.B. and Huang, T.L. (2021) Conducting Microporous Organic Polymer with -OH Functional Groups: Special Structure and Multi-Functional Integrated Property for Organophosphorus Biosensor. Chemical Engineering Journal. 405, Article ID: 126682.
https://doi.org/10.1016/j.cej.2020.126682
[13]  Alex, A.V. and Mukherjee, A. (2021) Review of Recent Developments (2018-2020) on Acetylcholinesterase Inhibition Based Biosensors for Organophosphorus Pesticides Detection. Microchemical Journal, 161, Article ID: 105779.
https://doi.org/10.1016/j.microc.2020.105779
[14]  Jain, M., Yadav, P., Joshi, B., Joshi, A. and Kodgire, P. (2021) Recombinant Organophosphorus Hydrolase (OPH) Expression in E. coli for the Effective Detection of Organophosphate Pesticides. Protein Expression and Purification, 186, Article ID: 105929.
https://doi.org/10.1016/j.pep.2021.105929
[15]  Zhao, F.N., He, J.W., Li, X.J., Bai, Y.P., Ying, Y.B. and Ping, J.F. (2020) Smart Plant-Wearable Biosensor for In-Situ Pesticide Analysis. Biosensors and Bioelectronics, 170, Article ID: 112636.
https://doi.org/10.1016/j.bios.2020.112636
[16]  Zhao, G.Z., Zhou, B.H., Wang, X.W., Shen, J. and Zhao, B. (2021) Detection of Organophosphorus Pesticides by Nanogold/Mercaptomethamidophos Multi-Residue Electrochemical Biosensor. Food Chemistry, 354, Article ID: 129511.
https://doi.org/10.1016/j.foodchem.2021.129511
[17]  He, Y., Du, J.W., Luo, J.H., Chen, S.H. and Yuan, R. (2020) Coreactant-Free Electrochemiluminescence Biosensor for the Determination of Organophosphorus Pesticides. Biosensors and Bioelectronics, 150, Article ID: 111898.
https://doi.org/10.1016/j.bios.2019.111898
[18]  Dong, H.W., Zhao, Q.X., Li, J.S., Xiang, Y.D., Liu, H.M., Guo, Y.M., Yang, Q.Q. and Sun, X. (2021) Broad-Spectrum Electrochemical Immunosensor Based on One-Step Electrodeposition of AuNP-Abs and Prussian Blue Nanocomposite for Organophosphorus Pesticide Detection. Bioprocess and Biosystems Engineering, 44, 585-594.
https://doi.org/10.1007/s00449-020-02472-9
[19]  Fu, J.Y., Yao, Y., An, X.S., Wang, G.X., Guo, Y.M., Sun, X. and Li, F.L. (2020) Voltammetric Determination of Organophosphorus Pesticides Using a Hairpin Aptamer Immobilized in a Graphene Oxide-Chitosan Composite. Microchimica Acta, 187, Article No. 36.
https://doi.org/10.1007/s00604-019-4022-4
[20]  Xu, L.P., Li, J.B., Zhang, J.J., Sun, J.Y., Gan, T. and Liu, Y.M. (2020) A Disposable Molecularly Imprinted Electrochemical Sensor for the Ultra-Trace Detection of the Organophosphorus Insecticide Phosalone Employing Monodisperse Pt-Doped UiO-66 for Signal Amplification. Analyst, 145, 3245-3256.
https://doi.org/10.1039/D0AN00278J
[21]  Noviana, E. and Henry, C.S. (2020) Simultaneous Electrochemical Detection in Paper-Based Analytical Devices. Current Opinion in Electrochemistry, 23, 1-6.
https://doi.org/10.1016/j.coelec.2020.02.013
[22]  Costa-Rama, E. and Fernandez-Abedul, M.T. (2021) Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. Biosensors, 11, Article No. 51.
https://doi.org/10.3390/bios11020051
[23]  Yang, N., Zhou, X., Yu, D.F., Jiao, S.Y., Han, X., Zhang, S.L., Yin, H. and Mao, H.P. (2020) Pesticide Residues Identification by Impedance Time-Sequence Spectrum of Enzyme Inhibition on Multilayer Paper-Based Microfluidic chip. Journal of Food Process Engineering, 43, Article ID: e13544.
https://doi.org/10.1111/jfpe.13544
[24]  Cioffi, A., Mancini, M., Gioia, V. and Cinti, S. (2021) Office Paper-Based Electrochemical Strips for Organophosphorus Pesticide Monitoring in Agricultural Soil. Environmental Science & Technology, 55, 8859-8865.
https://doi.org/10.1021/acs.est.1c01931
[25]  Zhao, F.N., Yao, Y., Jiang, C.M., Shao, Y.Z., Barcelo, D., Ying, Y.B. and Ping, J.F. (2020) Self-Reduction Bimetallic Nanoparticles on Ultrathin MXene Nanosheets as Functional Platform for Pesticide Sensing. Journal of Hazardous Materials, 384, Article ID: 121358.
https://doi.org/10.1016/j.jhazmat.2019.121358
[26]  Majdinasab, M., Daneshi, M. and Marty, J.L. (2021) Recent Developments in Non-Enzymatic (Bio)sensors for Detection of Pesticide Residues: Focusing on Antibody, Aptamer and Molecularly Imprinted Polymer. Talanta, 232, Article ID: 122397.
https://doi.org/10.1016/j.talanta.2021.122397
[27]  Wang, B., Li, Y.R., Hu, H.Y., Shu, W.H., Yang, L.Q. and Zhang, J.H. (2020) Acetylcholinesterase Electrochemical Biosensors with Graphene-Transition Metal Carbides Nanocomposites Modified for Detection of Organophosphate Pesticides. Biotech Week, 15, e0231981.
https://doi.org/10.1371/journal.pone.0231981
[28]  Sun, Y.F., Xiong, P.Y., Tang, J., Zeng, Z.Y. and Tang, D.P. (2020) Ultrasensitive Split-Type Electrochemical Sensing Platform for Sensitive Determination of Organophosphorus Pesticides Based on MnO2 Nanoflower-Electron Mediator as a Signal Transduction System. Analytical and Bioanalytical Chemistry, 412, 6939-6945.
https://doi.org/10.1007/s00216-020-02824-0
[29]  Tang, J., Li, J.J., Xiong, P.Y., Sun, Y.F., Zeng, Z.Y., Tian, X.C. and Tang, D.P. (2020) Rolling Circle Amplification Promoted Magneto-Controlled Photoelectrochemical Biosensor for Organophosphorus Pesticides Based on Dissolution of Core-Shell MnO2 Nanoflower@CdS Mediated by Butyrylcholinesterase. Mikrochimica Acta, 187, Article No. 450.
https://doi.org/10.1007/s00604-020-04434-0
[30]  Liu, Y.H., Cao, X., Liu, Z.Q., Sun, L.L., Fang, G.Z., Liu, J.F. and Wang, S. (2021) Electrochemical Detection of Organophosphorus Pesticides Based on Amino Acids-Conjugated P3TAA-Modified Electrodes. The Analyst, 145, 8068-8076.
https://doi.org/10.1039/D0AN01838D
[31]  Kaur, N., Bhatnagar, A., Bhalla, A. and Prabhakar, N. (2019) Determination of an Organophosphate Pesticide Using Antibody Immobilised Hybrid Nanocomposites. International Journal of Environmental Analytical Chemistry, 101, 1485-1498.
https://doi.org/10.1080/03067319.2019.1685665
[32]  Zeng, Z.Y., Tang, J., Zhang, M., Pu, S.Z. and Tang, D.P. (2021) Ultrasensitive Zero-Background Photoelectrochemical Biosensor for Analysis of Organophosphorus Pesticide Based on in Situ Formation of DNA-Templated Ag2S Photoactive Materials. Analytical and Bioanalytical Chemistry, 413, 6279-6288.
https://doi.org/10.1007/s00216-021-03582-3
[33]  Karimi-Maleh, H., Yola, M.L., Atar, N., Orooji, Y., Karimi, F., Kumar, P.S., Rouhi, J. and Baghayeri, M. (2021) A Novel Detection Method for Organophosphorus Insecticide Fenamiphos: Molecularly Imprinted Electrochemical Sensor Based on Core-Shell Co3O4@MOF-74 Nanocomposite. Journal of Colloid and Interface Science, 592, 174-185.
https://doi.org/10.1016/j.jcis.2021.02.066
[34]  Radi, A.E., Oreba, R. and Elshafey, R. (2021) Molecularly Imprinted Electrochemical Sensor for the Detection of Organophosphorus Pesticide Profenofos. Electroanalysis, 33, 1945-1951.
https://doi.org/10.1002/elan.202100175

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133