|
双圆弧谐波减速器柔轮结构优化分析
|
Abstract:
谐波减速器是空间指向机构的核心部件,而柔轮的径向变形会对刚轮和柔轮齿的啮合产生明显的轴向载荷,这种误差会导致柔轮的应力增大,传动精度和疲劳寿命降低。为了减小双圆弧谐波减速器柔轮关键参数对于其性能的影响,通过运动学的坐标变换,推到出共轭齿廓,基于减速器的运动关系,建立仿真的接触模型,研究筒长、壁厚等参数对柔轮应力应变的影响规律,从单因素影响规律分析中提取影响最大的三个参数:筒长、齿宽、倒角。基于Design Exploration响应面子模块,研究分析得出的三个最大影响参数组合下,对柔轮最大应力最小和在空间中小型轻量化的矛盾进行补偿优化。研究结果为双圆弧谐波减速器在空间中稳定长久的运行提供了参考。
Harmonic driver is the core component of spatial pointing mechanism, and the radial deformation of flexspline will produce obvious axial load on the meshing of rigid wheel and flexspline gear. This error will increase the stress of the flexspline and decrease the transmission accuracy and fatigue life. In order to reduce the influence of the key parameters of the flexspline of the double-arc harmonic driver on its performance, the conjugate tooth profile is derived through the coordinate transformation of kinematics, and the simulated contact model is established based on the motion relationship of the reducer to study the influence law of parameters such as barrel length and wall thickness on the stress and strain of the flexspline. The three most influential parameters: barrel length, tooth width and chamfer are extracted from the analysis of single-factor influence law. Based on the response surface sub-module of Design Exploration, under the combination of three maximum influence parameters obtained from research and analysis, the contradiction between the minimum maximum stress of flexspline and the lightweight of small and medium-sized in space is compensated and optimized. The research results provide a reference for the stable and long-term operation of double-arc harmonic driver in space.
[1] | Li, S.T. (2018) A Mathematical Model and Numeric Method or Contact Analysis of Rolling Bearings. Mechanism and Machine Theory, 119, 61-73. https://doi.org/10.1016/j.mechmachtheory.2017.08.020 |
[2] | Pacana, J., Witkowski, W. and Mucha, J. (2017) FEM Analysis of Stress Distribution in the Hermetic Harmonic Drive Flexspline. Strength of Materials, 49, 388-398. https://doi.org/10.1007/s11223-017-9879-z |
[3] | Wang, S., Jiang, G. and Mei, X. (2019). A Rapid Stress Calculation Method for Short Flexspline Harmonic Drive. Engineering Computations, 36, 1852-1867. https://doi.org/10.1108/EC-08-2018-0364 |
[4] | Yang, C., Hu, Q., Liu, Z., Zhao, Y., Cheng, Q. and Zhang, C. (2020) Analysis of the Partial Axial Load of a Very Thin-Walled Spur-Gear (Flexspline) of a Harmonic Drive. International Journal of Precision Engineering and Manufacturing, 21, 1333-1345. https://doi.org/10.1007/s12541-020-00333-9 |
[5] | 高海波, 李志刚, 邓宗全. 基于ANSYS 的杯形柔轮结构参数对柔轮应力的敏感度分析[J]. 机械工程学报, 2010, 46(5): 1-7. |
[6] | 张渝爽, 王家序, 汪正炜, 等. 变结构双圆弧柔轮的应力分析[J]. 机械传动, 2015, 39(8): 156-158. |
[7] | 邢静忠, 张泽, 陈晓霞, 等. 超短筒杯形和礼帽形谐波齿轮柔轮筒底应力的几何参数敏感性分析[J]. 机械传动, 2018, 42(12): 98-103. |
[8] | 董慧敏, 李德举, 齐书学. 基于正交实验与有限元分析的谐波齿轮传动柔轮杯体结构优化[J]. 机械传动, 2013, 37(1): 34-38. |