全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

空气质量预报系统的效果评估
Evaluation of the Effect of Air Quality Forecasting System

DOI: 10.12677/MOS.2022.113054, PP. 572-583

Keywords: 拉格朗日插值法,灰色关联度,K-Means聚类,二次预报,卡尔曼滤波
Lagrange Interpolation
, Grey Relational Degree, K-Means Clustering, Secondary Prediction, Kalman Filter

Full-Text   Cite this paper   Add to My Lib

Abstract:

大气与人类生活息息相关,社会对大气污染的准确预报需求迫切。本文对模型进行优化,降低各种参数的不确定性,采用拉格朗日插值法和均值法进行数据处理,利用灰色关联度进行降维得出回归方程、分析相关性,基于EM算法的K-Means聚类结果可视化,实现气象的合理分类。基于A监测点的实测数据样本,建立二次预报模型。结合过去值预测未来数据,进行数据纠正,再将预测得到的数据加入原有数据中,重新构造传递方程。最后采用卡尔曼滤波算法,进行去噪,进而实现噪声的压制,将模型结果与真实值和一次预报数据相比较,提高了模型的有效性与准确性。
There is an urgent need for accurate prediction of air pollution since the atmosphere is closely related to human life. In the paper, the model is optimized to reduce the uncertainty of various parameters and the Lagrange interpolation method and mean method are used for data processing; the grey correlation degree is used to reduce the dimension, obtain the regression equation and analyze the correlation. Besides, the K-Means clustering results based on EM algorithm are visualized to realize the reasonable classification of meteorology. In addition, a secondary prediction model is established based on the measured data samples of monitoring point A. Then predict the future data in combination with the past value and correct the data; then add the predicted data to the original data and reconstruct the transfer equation. Finally, Kalman filter algorithm is adopted to denoise, which realizes the suppression of the noise. In the end, the effectiveness and accuracy of the model are improved by comparing model results with the real value and one-time prediction data.

References

[1]  卢亚灵, 李勃, 范朝阳, 等. 空气质量预测模拟技术演变与发展研究[J]. 中国环境管理, 2021, 13(4): 84-92.
[2]  祁柏林, 郭昆鹏, 杨彬, 等. 基于 GCN-LSTM 的空气质量预测[J]. 计算机系统应用, 2021, 30(3): 208-213.
[3]  宋宇辰, 甄莎. BP神经网络和时间序列模型在包头市空气质量预测中的应用[J]. 干旱区资源与环境, 2013, 27(7): 65-70.
[4]  黄思, 唐晓, 徐文帅, 王哲, 陈焕盛, 李杰, 吴其重, 王自发. 利用多模式集合和多元线性回归改进北京PM_(10)预报[J]. 环境科学学报, 2015, 35(1): 56-64.
[5]  周广强, 谢英, 吴剑斌, 余钟奇, 常炉予, 高伟. 基于WRF-Chem模式的华东区域PM_(2.5)预报及偏差原因[J]. 中国环境科学, 2016, 36(8): 2251-2259.
[6]  王自发, 谢付莹, 王喜全, 安俊岭, 朱江. 嵌套网格空气质量预报模式系统的发展与应用[J]. 大气科学, 2006, 30(5): 778-790.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133