全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于灰色关联分析与逐步回归模型对乙醇偶合制备C4烯烃的研究
Research on Preparation of C4 Olefins by Coupling of Ethanol Based on Grey Relational Analysis and Stepwise Regression Model

DOI: 10.12677/MOS.2022.113052, PP. 548-561

Keywords: C4烯烃制备,线性拟合,灰色关联分析,逐步回归
Preparation of C4 Olefins
, Linear Fitting, Grey Relational Analysis, Stepwise Regression

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前,C4烯烃在化工产品的生产以及医药业中都得到了广泛的应用。在C4烯烃制备过程中催化剂和反应温度共同影响C4烯烃的选择性和乙醇转化率。通过研究设计催化剂的组合与反应温度,对于指导C4烯烃的生产有重要意义。本文对多次交叉实验的结果进行分析,采用控制变量的思想,分别使用线性拟合与灰色关联分析研究温度与催化剂组合对C4烯烃的选择性和乙醇转化率的影响。最后利用逐步回归模型得到了最优温度和最优催化剂组合,使得C4烯烃产率最高。
At present, C4 olefins have been widely used in the production of chemical products and the pharmaceutical industry. Catalyst and reaction temperature jointly affect the selectivity of C4 olefins and ethanol conversion during the preparation of C4 olefins. It is of great significance to guide the production of C4 olefins by studying and designing the combination of catalysts and the reaction temperature. In this paper, the results of multiple crossover experiments are analyzed, and the idea of controlling variables is used to study the effects of temperature and catalyst combination on the selectivity of C4 olefins and the conversion of ethanol by using linear fitting and grey relational analysis respectively. Finally, the stepwise regression model was used to obtain the optimal temperature and the optimal catalyst combination, which made the C4 olefin yield the highest.

References

[1]  李明, 于剑波, 逯怡博, 等. 基于回归分析模型探究乙醇偶合制备C4烯烃[J]. 江西化工, 2021, 37(6): 92-94.
[2]  吕绍沛. 乙醇偶合制备丁醇及C_4烯烃[D]: [硕士学位论文]. 大连: 大连理工大学, 2018.
[3]  Madeira, F.F., Gnep, N.S., Magnoux, P., et al. (2009) Ethanol Transformation over HFAU, HBEA and HMFI Zeolites Presenting Sim-ilar Br?nsted Acidity. Applied Catalysis A: General, 367, 39-46.
https://doi.org/10.1016/j.apcata.2009.07.033
[4]  Gayubo, A.G., Alonso, A., Valle, B., et al. (2010) Kinetic Model for the Transformation of Bioethanol into Olefins over a HZSM-5 Zeolite Treated with Alkali. Industrial & Engineering Chemistry Research, 49, 10836-10844.
https://doi.org/10.1021/ie100407d
[5]  Gayubo, A.G., Alonso, A., Valle, B., et al. (2010) Hydrothermal Stability of HZSM-5 Catalysts Modified with Ni for the Transformation of Bioethanol into Hydrocarbons. Fuel, 89, 3365-3372.
https://doi.org/10.1016/j.fuel.2010.03.002
[6]  Aguayo, A.T., Gayubo, A.G., Atutxa, A., et al. (2002) Catalyst Deactivation by Coke in the Transformation of Aqueous Ethanol into Hydrocarbons. Kinetic Modeling and Acidity Deterioration of the Catalyst. Industrial & Engineering Chemistry Research, 41, 4216-4224.
https://doi.org/10.1021/ie020068i
[7]  Iwamoto, M., Kasai, K. and Haishi, T. (2011) Conversion of Ethanol into Polyolefin Building Blocks: Reaction Pathways on Nickel Ion-Loaded Mesoporous Silica. ChemSusChem, 4, 1055-1058.
https://doi.org/10.1002/cssc.201100168
[8]  Hayashi, F. and Iwamoto, M. (2012) Yttrium Modified Ceria as a Highly Durable Catalyst for the Selective Conversion of Ethanol to Propene and Ethene. ACS Catalysis, 3, 14-17.
https://doi.org/10.1021/cs3006956
[9]  Mizuno, S., Kurosawa, M., Tanaka, M., et al. (2012) One-Path and Selective Conversion of Ethanol to Propene on Scandium-Modified Indium Oxide Catalysts. Chemistry Letters, 41, 892-894.
https://doi.org/10.1246/cl.2012.892
[10]  夏薇, 王钧国, 钱晨, 黄娅新, 马超, 范瑜, 侯梦达, 陈坤. Zr/ZSM-5分子筛催化乙醇制备低碳烯烃的综合性实验[J]. 实验技术与管理, 2021, 38(8): 149-153.
[11]  黄小雄. 复合氧化物催化乙醇制备1,3-丁二烯的研究[D]: [硕士学位论文]. 上海: 上海工程技术大学, 2017.
[12]  李娜, 柳彦从, 陆江银. 焙烧温度对Fe/HZSM-5催化剂催化乙醇制备低碳烯烃性能的影响[J]. 石油炼制与化工, 2011, 42(5): 27-30.
[13]  中国工业与应用数学学会. 2021高教社杯全国大学生数学建模竞赛赛题[EB/OL]. http://www.mcm.edu.cn/html_cn/node/4d73a36cc88b35bd4883c276afe39d89.html, 2021-10-05.
[14]  龙飞, 罗美, 吕玥, 何茜茜, 孙佳. 余额宝使用情况调查报告——以安徽省蚌埠市为例[J]. 财经界, 2017(30): 133-134.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133