全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进DMPs的下肢助行机器人步行楼梯的轨迹规划
Trajectory Planning of Lower Limb Walking-Assistant Robot Walking Stairs Based on Improved DMPs

DOI: 10.12677/MOS.2022.113057, PP. 606-615

Keywords: 下肢助行机器人,动态运动基元,轨迹规划
Lower Limb Walking-Assistant Robot
, Dynamic Movement Primitives, Trajectory Planning

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了辅助下肢功能障碍患者实现在不同尺寸楼梯行走,运用改进的动态运动基元(DMPs)结合机器人运动学分析规划下肢助行机器人运动轨迹和步态。首先,基于D-H模型,建立下肢助行机器人末端机构位姿与各关节角度的关系。然后,使用改进DMPs模仿预先采集到的正常人体步行楼梯轨迹曲线,根据楼梯高度和宽度参数修改目标点,泛化后得到适应新场景的轨迹曲线。再运用机器人逆运动学分析,规划出适应于不同尺寸楼梯的下肢助行机器人踝关节和髋关节运动轨迹。经过仿真实验验证,基于改进的DMPs结合逆运动学分析能有效地规划助行机器人运动的步态,使机器人能适应不同参数的楼梯行走。
In order to assist patients with lower limb dysfunction to walk on stairs of different sizes, improved dynamic movement primitives (DMPs) combined with robot kinematics analysis were used to plan the trajectory and gait of the lower limb walking-assistant robot. At first, the relationship between the posture of the end mechanism and the angles of each joint was established based on D-H model. Then, the improved DMPs were used to simulate the trajectory curve of normal human walking stairs, and the target points were modified according to the height and width of the stairs. After generalization, the trajectory curve adapted to the new scene was obtained. Then, the trajectory of ankle joint and hip joint of the robot adapted to stairs of different sizes is planned by using inverse kinematics analysis of robot. The simulation results show that the improved DMPs combined with inverse kinematics analysis can effectively plan the gait of the walking aid robot so that the robot can adapt to stair walking with different parameters.

References

[1]  李建军, 王方永. 脊髓损伤神经学分类国际标准(2011年修订) [J]. 中国康复理论与实践, 2011, 17(10): 963-972.
[2]  Kawamoto, H. (2014) Development of an Assist Controller with Robot Suit HAL for Hemiplegic Patients Using Motion Data on the Unaffected Side. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, 26-30 August 2014, 3077-3080.
https://doi.org/10.1109/EMBC.2014.6944273
[3]  Taketomi, T. and Sankai, Y. (2012) Stair Ascent Assistance for Cerebral Palsy with Robot Suit HAL. 2012 IEEE/SICE International Symposium on System Integration (SII), Fukuoka, 16-18 December 2012, 331-336.
https://doi.org/10.1109/SII.2012.6427274
[4]  Choi, J., et al. (2017) Walk on Suit: A Medalist in the Powered Exoskeleton Race of Cybathlon. IEEE Robotics & Automation Magazine, 24, 75-86.
https://doi.org/10.1109/MRA.2017.2752285
[5]  Feng, Y., Xia, L., He, Y., et al. (2019) Stairs Reconstruction with 3D Point Cloud for Gait Generation of Lower Limb Exoskeleton Robot. 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, 6-8 December 2019, 2019-2024.
https://doi.org/10.1109/ROBIO49542.2019.8961511
[6]  Ma, Y., Wu, X.Y., Yang, S., et al. (2021) Online Gait Planning of Lower-Limb Exoskeleton Robot for Paraplegic Rehabilitation Considering Weight Transfer Process. IEEE Transactions on Automation Science and Engineering, 18, 414-425.
[7]  傅利叶智能. Fourier X2下肢外骨骼机器人[EB/OL]. http://www.fftai.com/product/X2.php, 2022-02-20.
[8]  帅梅, 余兴武, 王战斌. 穿戴式下肢外骨骼康复机器人[P]. 中国, CN103735386B. 2013-11-15.
[9]  周智雍, 钱伟, 丁加涛, 等. 基于核化运动基元的外骨骼膝关节步态轨迹在线规划[J]. 机器人, 2021, 43(5): 557-566.
[10]  Banala, S.K., Kim, S.H., Agrawal, S.K., et al. (2009) Robot Assisted Gait Training with Active Leg Exoskeleton (ALEX). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 2-8.
https://doi.org/10.1109/BIOROB.2008.4762885
[11]  蔡自兴, 谢斌. 机器人学[M]. 第三版. 北京: 清华大学出版社, 2015.
[12]  黄艳龙, 徐德, 谭民. 机器人运动轨迹的模仿学习综述[J]. 自动化学报, 2022, 48(2): 315-334.
[13]  Fournier, B., Lemaire, E.D., Smith, A. and Doumit, M. (2018) Modeling and Simulation of a Lower Extremity Powered Exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26, 1596-1603.
https://doi.org/10.1109/TNSRE.2018.2854605
[14]  石青, 王化平, 吴阳. MATLAB基础与机器人学应用[M]. 北京: 北京理工大学出版社, 2019.
[15]  Ijspeert, A.J., Nakanishi, J., Hoffmann, H., et al. (2013) Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors. Neural Computation, 25, 325.
https://doi.org/10.1162/NECO_a_00393
[16]  Ijspeert, A.-J., Jun, N. and Stefan, S. (2002) Learning Attractor Landscapes for Learning Motor Primitives.
[17]  Ijspeert, A.J., Nakanishi, J. and Schaal, S. (2002) Movement Imitation with Nonlinear Dynamical Systems in Humanoid Robots. Proceedings IEEE International Conference on Robotics and Automation, Vol. 2, 1398-1403.
[18]  Wang, R.H., Wu, Y., Chan, W.-L., et al. (2016) Dynamic Movement Primitives plus: For Enhanced Reproduction Quality and Efficient Trajectory Modification Using Truncated Kernels and Local Biases. International Conference on Intelligent Robots and Systems: IEEE, Daejeon, 9-14 October 2016, 3765-3771.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133