|
食饵具有常数投放率的食饵-捕食模型的定性分析
|
Abstract:
本文研究食饵具有常数投放率的食饵-捕食模型的定性性质,通过线性近似给出了平衡点稳定的充 分条件,并用Dulac函数得出了无极限环的结论。通过构造环域境界线给出极限环存在的条件。最后用数值模拟验证结论的正确性。
In this paper, the qualitative properties of the predator-prey model with constant investment rate are studied. The sufficient conditions for the stability of equilibrium points are obtained by linearization method; and the conclusion for no limit cycle is proved by Dulac function; by constructing boundary lines, the condition for the existence of a limit cycle is gained. Finally, numerical simulation is used to verify the correctness of the conclusion.
[1] | 陆忠华, 陈兰孙. 食饵种群具有常数投放率的捕食-食饵模型分支问题[J]. 数学杂志, 1994(4):541-548. |
[2] | 李传荣, 杨亚炜. 一类捕食者有投放率系统的定性分析[J]. 西安交通大学学报, 1995(8):117-122. |
[3] | 王清娟. 食饵具有常数投放率的Holling-IV类捕食系统的定性分析[J]. 延边大学学报(自然科学版), 2018, 44(3): 213-216+228. |
[4] | 王清娟. 食饵具常投放率的捕食-食饵模型的定性分析[J]. 宁夏大学学报(自然科学版), 2019,40(2): 97-101. |
[5] | 王清娟. 具常数投放率的捕食者-食饵模型的定性分析[J]. 延边大学学报(自然科学版), 2017,43(4): 339-343. |
[6] | 梁桂珍, 张秦, 丰莹莹. 一类食饵具有投放率和捕食者具有捕获率的非自治捕食系统的全局分析[J]. 数学的实践与认识, 2016, 46(7): 288-292. |
[7] | 张敬, 高文杰, 周莉. 两种群分别有常投放率和常收获率的Holling-IV类捕食系统[J]. 吉林大学 学报(理学版), 2011, 49(1): 11-15. |
[8] | Si, C.B. (2015) The Existence of Three Limit Cycles for Lotka-Volterra Systems with Two Species Both Having a Constant Harvest Rate or Investment Rate. Proceedings of the Institu- tion of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226, 410-418. |
[9] | 张芷芬, 丁同仁, 黄文造, 董镇喜. 微分方程定性理论[M]. 北京: 科学出版社, 1985: 130-136. |
[10] | 马知恩, 周义仓. 常微分方程定性与稳定性方法[M]. 北京: 科学出版社, 2001: 158-160. |