全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

河北省南宫市COVID-19网络重构及拓扑特征分析
COVID-19 Network Reconstruction and Topology Characteristic Analysis in Nangong City, Hebei Province

DOI: 10.12677/AAM.2022.115271, PP. 2559-2571

Keywords: 新型冠状病毒肺炎,疾病传播网络,链路预测,网络重构,拓扑特征
COVID-19
, Disease Transmission Network, Link Prediction, Network Reconstruction, Topological Characteristic

Full-Text   Cite this paper   Add to My Lib

Abstract:

2019年新型冠状病毒肺炎(COVID-19)大流行是一场严重的全球公共卫生突发事件。隔离病例、切断传播途径已经成为目前控制疫情的主要有效措施。由于溯源工作的复杂性,病例溯源信息统计数据不完整。在本研究中,我们提取了卫生健康委员会报告的确诊病例的行程轨迹相关数据,并构建了初始的疾病传播网络,基于链路预测算法构建最可能的疾病传播网络。在重构前后网络的基础上,比较重构前后的不同拓扑特征,获得重要病例和感染途径。结果表明,重构后的网络具有较高的聚类系数,较短的平均路径长度,即大多数病例无法直接连通,而是通过少量病例进行接触,这是疾病在较短时间内迅速传播的原因。此外,通过对疾病传播网络中心性指标的计算和分析,我们发现青亭路和天地名城小区的2例病例是网络传播的重要病例。我们的研究结果表明,尽快隔离重要病例,切断重要传播路径,将能够为控制新冠肺炎疫情作出重大贡献。
Coronavirus Disease 2019 (COVID-19) pandemic is a grave global public health emergency. Isolating cases and cutting off the route of transmission have become the main and effective measures to control the epidemic thus far. Owing to the complexity of traceability work, the statistical data of case tracing information are incomplete. In this study, we extract data associated with the itinerary trajectories of confirmed cases reported by Health Commission and then construct the initial dis-ease transmission network. We establish the most likely disease transmission network based upon link prediction algorithms. On the basis of the network before and after reconstruction, we compare the different topological characteristics of the network to obtain important cases and infection routes. The results reveal that, the reconstructed network has higher clustering coefficient as well as shorter average path length, i.e. most cases cannot be connected but are contacted through a small amount of cases, signifying that the reason for the rapid spread of the disease in a short peri-od of time. In particular, by calculating and analyzing the centrality index of the disease transmis-sion network, we find that two cases live in Qingting road and Tiandimingcheng community respec-tively were important cases of network transmission. Our results suggest that isolating important cases and cutting off important connections as soon as possible, which will be able to significantly contribute to the control of COVID-19.

References

[1]  Kraemer, M.U.G., Yang, C.H., Gutierrez, B., et al. (2020) The Effect of Human Mobility and Control Measures on the COVID-19 Epidemic in China. Science, 368, 493-497.
https://doi.org/10.1126/science.abb4218
[2]  Wu. J.T., Leung, K. and Leung, G.M. (2020) Nowcasting and Forecasting the Potential Domestic and in China: A Modelling Study. The Lancet, 395, 689-697.
https://doi.org/10.1016/S0140-6736(20)30260-9
[3]  Yang, Z.F., Zeng, Z.Q., Wang, K., et al. (2020) Modified SEIR and AI Prediction of the Epidemics Trend of COVID-19 in China under Public Health In-terventions. Journal of Thoracic Disease, 12, 165.
https://doi.org/10.21037/jtd.2020.02.64
[4]  吕林媛. 复杂网络链路预测[J]. 电子科技大学学报, 2010, 39(5): 651-661.
[5]  樊洁茹, 孙向东, 戴琪, 等. 基于链路预测的全国活羊调运网络重构[J]. 中北大学学报(自然科学报), 2015, 36(3): 276-281.
[6]  Kaya, B. and Poyraz, M. (2015) Age-Series Based Link Prediction in Evolving Disease Networks. Computers in Biology and Medicine, 63, 1-10.
https://doi.org/10.1016/j.compbiomed.2015.05.003
[7]  Mccoy, K., Gudapati, S., He, L., et al. (2021) Biomedical Text Link Prediction for Drug Discovery: A Case Study with COVID-19. Pharmaceutics, 13, 794.
https://doi.org/10.3390/pharmaceutics13060794
[8]  Folino, F. and Pozzuti, C. (2012) Link Prediction Approaches for Disease Networks. International Conference on Information Technology in Bio- and Medical Informatics, Springer, Berlin, 99-108.
https://doi.org/10.1007/978-3-642-32395-9_8
[9]  Relun, A., Grpsnois, V. and Sanchez-vizcafno, J.M. (2016) Spatial and Functional Organization of Pig Trade in Different European Production Systems: Implications for Disease Prevention and Control. Frontiers in Veterinary Science, 3, Article No. 4.
https://doi.org/10.3389/fvets.2016.00004
[10]  Lichoti, J.K., Davies, J., Maru, Y., et al. (2017) Pig Traders’ Net-works on the Kenya-Uganda Border Highlight Potential for Mitigation of African Swine fever Virus Transmission and Improved ASF Disease Risk Management. Preventive Veterinary Medicine, 140, 87-96.
https://doi.org/10.1016/j.prevetmed.2017.03.005
[11]  Jing, F.S., et al. (2021) Reconstructing the Social Network of HIV Key Populations from Locally Observed Information. AIDS Care, 1-8.
https://doi.org/10.1080/09540121.2021.1883514
[12]  Kuang, J. and Scoglio, C. (2021) Layer Reconstruction and Missing Link Prediction of Multilayer Network with Maximum A Posteriori Estimation.
[13]  Per, X., Jin, Z., et al. (2019) Detection of Infection Sources for Avian Influenza A (H7N9) in Live Poultry Transport Network during the Fifth Wave in China. IEEE Access, 7, 155759-155778.
https://doi.org/10.1109/ACCESS.2019.2949606
[14]  Kurscheid, J., Stevenson, M., Durr, P.A., et al. (2017) Social Network Analysis of the Movement of Poultry to and from Live Bird Markets in Bali and Lombok, Indonesia. Trans-boundary and Emerging Diseases, 64, 2023-2033.
https://doi.org/10.1111/tbed.12613
[15]  Yang, X.H., et al. (2016) Link Prediction Based on Local Community Properties. International Journal of Modern Physics B, 30, Article ID: 1650222.
https://doi.org/10.1142/S0217979216502222
[16]  Salton, G. and Mcgill, M.J. (1983) Introduction to Modern In-formation Retrieval. McGraw-Hill, Auckland.
[17]  Hwang, C.M., Yang, M.S. and Hung, W.L. (2018) New Similarity Measures of Intuitionistic Fuzzy Sets Based on the Jaccard Index with Its Application to Clustering. International Jour-nal of Intelligent Systems, 33, 1672-1688.
[18]  Sorensen, T. (1948) A Method of Establishing Groups of Equal Ampli-tude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons. Biologiske Skrifter, 5, 1-34.
[19]  Zhou, T., Lu, L.Y. and Zhang, Y.C. (2009) Prediction Missing Links via Local Information. The European Physical Journal B—Condensed Matter and Complex Systems, 71, 623-630.
https://doi.org/10.1140/epjb/e2009-00335-8
[20]  Ravasz, E., Somera, A.L., Mongru, D.A., et al. (2002) Hierar-chical Organization of Modularity in Metabolic Network. Science, 297, 1551-1555.
https://doi.org/10.1126/science.1073374
[21]  Wang, W.Q., Zhang, Q.M. and Zhou, T. (2012) Evaluating Network Models: A Likelihood Analysis. EPL (Europhysics Letters), 98, 28004.
https://doi.org/10.1209/0295-5075/98/28004
[22]  Adamic, L.A. and Adar, E. (2003) Friends and Neighbors on the Web. Social Networks, 25, 211-230.
https://doi.org/10.1016/S0378-8733(03)00009-1
[23]  Qu, Q., Jin, Y.D., Zhou, T., et al. (2007) Power-Law Strength-Degree Correlation from Resource-Allocation Dynamics on Weighted Networks. Physical Review E, 75, Article ID: 021102.
https://doi.org/10.1103/PhysRevE.75.021102
[24]  Barabasi, A.L. and Albert, R. (1999) Emergence of Scaling in Random Networks. Science, 286, 509-512.
https://doi.org/10.1126/science.286.5439.509
[25]  Zhang, X.Q., et al. (2021) Multiplex Network Reconstruction for the Coupled Spatial Diffusion of Infodemic and Pandemic of COVID-19. International Journal of Digital Earth, 14, 401-423.
https://doi.org/10.1080/17538947.2021.1888326
[26]  Battision, F., Nicosia, V. and Latora, V. (2014) Structural Measures for Multiplex Networks. Physical Review E, 89, 1-16.
https://doi.org/10.1103/PhysRevE.89.032804
[27]  卢鹏丽, 董璊, 曹乐. 聚类系数指标对复杂网络鲁棒性的影响分析[J]. 兰州理工大学学报, 2019, 45(3): 101-107.
https://doi.org/10.1103/PhysRevLett.89.208701
[28]  Newman, M.E.J. (2002) Assortative Mixing in Networks. Physical Review Letters, 89, Article ID: 208701.
[29]  王锋, 许梁煌, 郑玉芳. 基于m阶邻居节点的复杂网络关键节点评估[J]. 福州大学学报(自然科学版), 2019, 47(2): 237-243.
[30]  Sabidussi, G. (1966) The Centrality Index of a Graph. Psychometrika, 31, 581-603.
https://doi.org/10.1007/BF02289527
[31]  Agryzkov, T., Tortosa, L., Vicent, J.F. and Wilson, R. (2019) A Central-ity Measure for Urban Networks Based on the Eigenvector Centrality Concept. Environment and Planning B: Urban An-alytics and City Science, 46, 668-689.
https://doi.org/10.1177/2399808317724444
[32]  Yan, G., Zhou, T., Hu, B., et al. (2006) Efficient Routing on Complex Networks. Physical Review E, 73, Article ID: 046108.
[33]  王军进, 刘家国, 李竺珂. 基于复杂网络的供应链企业合作关系研究[J]. 系统科学学报, 2021, 29(3): 110-130.
[34]  Tlaie, A., Leyva, I., Sevilla-Escoboza, R. and Vera-Avila, V.P. (2019) Dynamical Complexity as a Proxy for the Network Degree Distribution. Physical Review E, 99, Article ID: 012310.
https://doi.org/10.1103/PhysRevE.99.012310
[35]  周涛, 肖伟科, 等. 网络集团度的幂律分布[J]. 复杂系统与复杂性科学, 2007, 4(2): 10-17.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133