|
碳化硅的制备及应用最新研究进展
|
Abstract:
碳化硅具有强度大、硬度高、弹性模量大、耐磨性好、导热性强和耐腐蚀性好等优异性能,被广泛地应用于磨料磨具、陶瓷、冶金、半导体、耐火材料等领域。常用的制备碳化硅粉体方法有碳热还原法、机械粉碎法、溶胶–凝胶法、化学气相沉积法和等离子体气相合成法等等。本文对SiC粉体的制备、碳化硅陶瓷烧结技术和应用进行系统综述和总结,并对未来可能的研究方向进行了展望。
Silicon carbide has excellent properties such as high strength, high hardness, large elastic modulus, good wear resistance, strong thermal conductivity and corrosion resistance. It is widely used in abrasive tools, ceramics, metallurgy, semiconductors, refractories and other fields. Commonly used silicon carbide powders are carbothermal reduction, self propagating synthesis, high temperature plasma, sol-gel, chemical vapor deposition and high-energy mechanical ball milling. In this paper, the preparation of SiC powder, sintering technology and application of silicon carbide ceramics are systematically reviewed and summarized, and the possible research directions in the future are prospected.
[1] | 刘辉, 钱洪波. 小于1微米碳化硅超细粉的研究与开发[J]. 中国非金属矿工业导刊, 2001(3): 18-19. |
[2] | 翟彦霞, 李兆敏, 孙海滨, 等. 反应烧结工艺对碳化硅陶瓷微结构及性能的影响[J]. 硅酸盐通报, 2017, 36(2): 753-758. |
[3] | 王洪涛, 陈枭, 白小波, 等. 球磨法制备超细碳化硅粉体[J]. 中国粉体技术, 2015, 21(5): 9-13+20. |
[4] | Yang, Y., Lin, Z.M. and Li, J.T. (2009) Synthesis of SiC by Silicon and Carbon Combustion in Air. Journal of the European Ceramic Society, 29, 175-180. https://doi.org/10.1016/j.jeurceramsoc.2008.06.013 |
[5] | Raj, P., Gupta, G.S. and Rudolph, V. (2020) Silicon Carbide Formation by Carbothermal Reduction in the Acheson Process: A Hot Model Study. Thermochimica Acta, 687, Article ID: 178577. https://doi.org/10.1016/j.tca.2020.178577 |
[6] | 朱文振, 郑治祥, 姜坤, 等. 碳热还原法低温制备碳化硅微粉[J]. 硅酸盐通报, 2012, 31(1): 46-49. |
[7] | 安子博, 汪晗, 竺昌海, 等. 硅碳直接反应法制备超细β-SiC粉[J]. 武汉工程大学学报, 2016, 38(6): 560-564. |
[8] | 何晓燕, 王兴磊, 张月梅, 等. 微波辅助溶胶-凝胶法合成碳化硅粉体[J]. 新疆教育学院学报, 2014, 30(4): 84-86. |
[9] | 戴培赟, 李晓丽, 王泌宝, 等. 碳化硅粉体合成技术研究进展[J]. 耐火材料, 2013, 47(S2): 376-379. |
[10] | Fedorov, R., Lederle, F., Li, M., et al. (2021) Formation of Titanium Nitride, Titanium Carbide, and Silicon Carbide Surfaces by High Power Femtosecond Laser Treatment. ChemPlusChem, 86, 1231-1242.
https://doi.org/10.1002/cplu.202100118 |
[11] | 贾林涛, 王梦千, 朱界, 等. 化学气相沉积法从MTS-H2-N2前驱体制备碳化硅涂层[J]. 陶瓷学报, 2020, 41(2): 257-263. |
[12] | 马连喜, 周怡, 付广生. 激光等离子体气相合成纳米SiC陶瓷粉末[J]. 中国有色金属学报, 1998(S2): 349-350. |
[13] | Jia, B., Zhang, J., Wang, T., et al. (2019) Effect of Ti-Si-Fe Alloy Powder Addition on Properties of Silicon Nitride Bonded Silicon Carbide Materials Prepared by Reaction Sintering in Carbon Embedded Atmosphere. Refractories, 53, 441-444. |
[14] | 胡传奇, 刘海林, 黄小婷, 等. 反应烧结碳化硅的显微结构和力学性能分析[J]. 中国陶瓷工业, 2020, 27(5): 7-11. |
[15] | 李辰冉, 谢志鹏, 赵林. 碳化硅陶瓷材料烧结技术的研究与应用进展[J]. 陶瓷学报, 2020, 41(2): 137-149. |
[16] | 石秀丽. 碳化硅陶瓷的无压液相烧结及性能研究[D]: [硕士学位论文]. 伊宁: 伊犁师范学院, 2015. |
[17] | 吕德龙. 新材料在军民融合中的应用[J]. 中国军转民, 2017(10): 21-24. |
[18] | Palmour, J.W., Zhang, J.Q., Das, M.K., et al. (2010) SiC Power Devices for Smart Grid Systems. Power Electronics Conference IEEE, Sapporo, 21-24 June 2010, 1006-1013. https://doi.org/10.1109/IPEC.2010.5542027 |
[19] | 刘启强, 栗子涵. 天域半导体: 聚焦核心技术攻关推动碳化硅半导体产业发展[J]. 广东科技, 2022, 31(1): 24-26. |
[20] | 欧阳灿. 碳化硅材料在有色冶金领域的应用研究[J]. 有色冶金节能, 2019, 35(3): 9-11. |
[21] | 苏静, 王艳辉, 董亮, 等. 碳化硅和碳化硼在电催化中的应用[J]. 无机化学学报, 2018, 34(1): 1-10. |
[22] | 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10. |