全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TiO2纳米管阵列的制备和应用最新研究进展
Latest Research Progress on Preparation of TiO2 Nanotube Arrays and Their Applications

DOI: 10.12677/OJNS.2022.103027, PP. 212-219

Keywords: TiO2纳米管阵列,半导体,制备方法,改性方法,应用
TiO2 Nanotube Arrays
, Semiconductors, Preparation Method, Modification Method, Applications

Full-Text   Cite this paper   Add to My Lib

Abstract:

TiO2纳米管阵列由于具有高度有序的纳米结构,在光电转换、光催化和光解水制氢等领域具有广阔的应用前景,受到了研究者们的广泛关注。本文综述了近年来TiO2纳米管阵列几种常用的制备方法,并从制备特点和可行性等方面进行了对比。同时鉴于现阶段TiO2纳米管阵列存在的不足,指出了当前TiO2纳米管阵列的改性方法。从太阳能电池,有机污染物的降解,气敏传感器等方面对其应用进行了详细介绍。最后对今后的研究重点和发展方向进行了展望。
Due to their highly ordered nanostructures, TiO2 nanotube arrays have broad application prospects in the fields of photoelectric conversion, photocatalysis, and photo-splitting of water for hydrogen production, and have received extensive attention from researchers. In this paper, several commonly used methods for the preparation of TiO2 nanotube arrays in recent years are reviewed and compared in terms of preparation characteristics and feasibility. Meanwhile, in view of the shortcomings of TiO2 nanotube arrays at the present stage, the current modification methods of TiO2 nanotube arrays are pointed out. The applications are introduced in detail from solar cells, degradation of organic pollutants, and gas-sensitive sensors. Finally, the future research focus and development direction are prospected.

References

[1]  Yuan, Z.M., Tang, R., Zhang, Y.N. and Yin, L.W. (2017) Enhanced Photovoltaic Performance of Dye-Sensitized Solar Cells Based on Co9S8 Nanotube Array Counter Electrode and TiO2/g-C3N4 Heterostructure Nanosheet Photoanode. Journal of Alloys and Compounds, 691, 983-991.
https://doi.org/10.1016/j.jallcom.2016.08.136
[2]  程凯, 宋华, 王雪芹. 规整TiO2纳米管阵列的制备及其沉积改性研究进展[J]. 化工新型材料, 2018, 46(2): 1-4.
[3]  赵春琦, 荆涛, 田景芝, 赵志远, 娄丛强, 王超. TiO2纳米管阵列的制备及其应用研究进展[J]. 化工新型材料, 2021, 49(4): 242-246.
[4]  Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K. (1998) Formation of Titanium Oxide Nanotube. Langmuir, 14, 3160-3163.
https://doi.org/10.1021/la9713816
[5]  邱澜鑫, 董荣, 蔡芳共, 张勤勇. TiO2纳米管阵列的阳极氧化法制备及形成机理研究进展[J]. 电子元件与材料, 2019, 38(11): 1-9.
[6]  Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., et al. (2011) Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation. Journal of Materials Research, 16, 3331-3334.
https://doi.org/10.1557/JMR.2001.0457
[7]  Ghicov, A., Tsuchiya, H., Macak, J.M. and Schmuki, P. (2005) Titanium Oxide Nanotubes Prepared in Phosphate Electrolytes. Electrochemistry Communications, 7, 505-509.
https://doi.org/10.1016/j.elecom.2005.03.007
[8]  Prakasam, H.E., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007) A New Benchmark for TiO2 Nanotube Array Growth by Anodization. Journal of Physical Chemistry C, 111, 7235-7241.
https://doi.org/10.1021/jp070273h
[9]  周淑慧. 多元协同改性TiO2纳米管阵列的制备与光电性能研究[D]: [硕士学位论文]. 郑州: 河南工业大学, 2020.
[10]  Allam, N.K., Shankar, K. and Grimes, C.A. (2008) Photoelectrochemical and Water Photoelectrolysis Properties of Ordered TiO2 Nanotubes Fabricated by Ti Anodization in Fluoride-Free HCI Electrolytes. Journal of Materials Chemistry, 18, 2341-2348.
https://doi.org/10.1039/b718580d
[11]  郑青, 周保学, 白晶, 蔡伟民, 廖俊生. TiO2纳米管阵列及其应用[J]. 化学进展, 2007, 19(1): 117-122.
[12]  武佳, 徐浩, 延卫. TiO2纳米管阵列的制备改性及应用研究进展[J]. 化工进展, 2016, 35(z1): 188-194.
[13]  Toledo, W.D., Couto, A.B., Almeida, D. and Ferreira, N.G. (2019) Facile Synthesis of TiO2/rGO Neatly Electrodeposited on Carbon Fiber Applied as Ternary Electrode for Supercapacitor. Materials Research Express, 6, Article ID: 065040.
https://doi.org/10.1088/2053-1591/ab0928
[14]  Wang, X.X., Ning, J.X., Xue, W., Li, J. and Zhao, J. (2016) Preparation and Capacitance Properties of Mn-Doped TiO2 Nanotube Arrays by Anodisation of Ti-Mn Alloy. Journal of Alloys and Compounds, 658, 177-182.
https://doi.org/10.1016/j.jallcom.2015.10.204
[15]  Peighambardoust, N.S., Khameneh Asl, S., Mohammadpour, R. and Khameneh Asl, S. (2018) Band-Gap Narrowing and Electrochemical Properties in N-Doped and Reduced Anodic TiO2 Nanotube Arrays. Electrochimica Acta, 270, 245-255.
https://doi.org/10.1016/j.electacta.2018.03.091
[16]  Yan, G.T., Zhang, M., Hou, J. and Yang, J. (2011) Photoelectrochemical and Photocatalytic Properties of N + S Co-Doped TiO2 Nanotube Array Films under Visible Light Irradiation. Materials Chemistry and Physics, 129, 553-557.
https://doi.org/10.1016/j.matchemphys.2011.04.063
[17]  杨进. TiO2纳米管阵列制备及光催化性能研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2020.
[18]  Bae, E. and Choi, W. (2003) Highly Enhanced Photoreductive Degradation of Perchlorinated Compounds on Dye-Sensitized Metal/TiO2 under Visible Light. Environmental Science & Technology, 37, 147-152.
https://doi.org/10.1021/es025617q
[19]  Kong, J.H., Song, C.X., Zhang, W., Xiong, Y., Wan, M. and Wang, Y. (2017) Enhanced Visible-Light-Active Photocatalytic Performances on Ag Nanoparticles Sensitized TiO2 Nanotube Arrays. Superlattices and Microstructures, 109, 579-587.
https://doi.org/10.1016/j.spmi.2017.05.050
[20]  Lv, J., Gao, H., Wang, H., Lu, X., Xu, G., Wang, D., et al. (2015) Controlled Deposition and Enhanced Visible Light Photocatalytic Performance of Pt-Modified TiO2 Nanotube Arrays. Applied Surface Science, 351, 225-231.
https://doi.org/10.1016/j.apsusc.2015.05.139
[21]  Wang, Q., Sun, C., Liu, Z., Tan, X., Zheng, S., Zhang, H., et al. (2019) Ultrasound-Assisted Successive Ionic Layer Adsorption and Reaction Synthesis of Cu2O Cubes Sensitized TiO2 Nanotube Arrays for the Enhanced Photoelectrochemical Performance. Materials Research Bulletin, 111, 277-283.
https://doi.org/10.1016/j.materresbull.2018.11.021
[22]  Nguyen, V.M., Li, W., Pham, V.H., Wang, L., Sheng, P., Cai, Q., et al. (2016) A CdS/ZnSe/ TiO2 Nanotube Array and Its Visible Light Photocatalytic Activities. Journal of Colloid and Interface Science, 462, 389-396.
https://doi.org/10.1016/j.jcis.2015.10.005
[23]  Yao, Y., Sun, M., Zhang, Z., Lin, X., Gao, B., Anandan, S., et al. (2019) In Situ Synthesis of MoO3/Ag/TiO2 Nanotube Arrays for Enhancement of Visible-Light Photoelectrochemical Performance. International Journal of Hydrogen Energy, 44, 9348-9358.
https://doi.org/10.1016/j.ijhydene.2019.02.100
[24]  Zhang, Y., Nie, J.T., Wang, Q., Zhang, X., Wang, Q. and Cong, Y. (2017) Synthesis of Co3O4/Ag/TiO2 Nanotubes Arrays via Photo-Deposition of Ag and Modification of Co3O4 (311) for Enhancement of Visible-Light Photoelectrochemical Performance. Applied Surface Science, 427, 1009-1018.
https://doi.org/10.1016/j.apsusc.2017.09.008
[25]  Peighambardoust, N.S., Khameneh Asl, S., Mohammadpour, R. and Khameneh Asl, S. (2019) Improved Efficiency in Front-Side Illuminated Dye Sensitized Solar Cells Based on Free-Standing One-Dimensional TiO2 Nanotube Array Electrodes. Solar Energy, 184, 115-126.
https://doi.org/10.1016/j.solener.2019.03.073
[26]  Xie, Y.B. (2010) Photoelectrochemical Reactivity of a Hybrid Electrode Composed of Polyoxophosphotungstate Encapsulated in Titania Nanotubes. Advanced Functional Materials, 16, 1823-1831.
https://doi.org/10.1002/adfm.200500695
[27]  邹继颖, 刘辉, 陈意, 李万海, 权佳惠, 李英华, 等. 金属离子掺杂TiO2光催化降解甲基橙的研究[J]. 化工新型材料, 2017, 45(8): 167-170.
[28]  Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005) Enhanced Photo Cleavage of Water Using Titania Nanotube Arrays. Nano Letters, 5, 191-195.
https://doi.org/10.1021/nl048301k
[29]  Varghese, O.K., Gong, D.W., Paulose, M., Ong, K., Dickey, E. and Grimes, C. (2003) Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure. Advanced Materials, 15, 624-627.
https://doi.org/10.1002/adma.200304586
[30]  马士才. TiO2纳米管阵列的制备及其气体敏感性能研究[D]: [硕士学位论文]. 天津: 天津大学, 2007.
[31]  孔德国, 张红美. TiO2纳米管的制备方法[J]. 塔里木大学学报, 2010, 22(4): 96-100.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133