|
新冠疫情下碳排放权期权定价及实证研究
|
Abstract:
随着低碳经济时代的到来,不论是理论研究还是实际应用方面,碳排放权的定价问题越来越受到大家的关注,尤其是研究新冠疫情下碳排放权期权定价问题。本文借助于决策树梯度提升算法(LGBM)、自适应噪声的完全经验模态分解(CEEMDAN)及AE近似熵重构算法,集机制转换的跳–扩散模型(RSJM)、径向基神经网络模型(RBF)的优点,建立了一种不同特征维度下RSJM-RBF碳排放权期权定价模型;并利用新冠疫情下欧盟EUA碳排放权期权数据进行了实证分析。实证结果表明:与基于GARCH的分数布朗运动模型(FBM)相比,本文提出的RSJM-RBF碳排放权期权定价模型具有较高的预测精度;以皮尔逊相关系数为指标,对两种模型进行了鲁棒性分析,结果显示本文所建模型的稳健性更强。
With the advent of the era of low-carbon economy, the pricing of carbon emission rights has at-tracted more and more attention from both theoretical research and practical application, espe-cially the pricing of carbon emission rights options under the COVID-19. In this paper, with the help of the gradient lifting algorithm of decision tree (LGBM), complete empirical mode decomposition with adaptive noise (CEEMDAN) and the approximate entropy reconstruction (AE) algorithm, and the advantages of the jump-diffusion model of mechanism conversion (RSJM) and the radial basis function neural network model (RBF), a RSJM-RBF carbon emission option pricing model with dif-ferent feature dimensions is established. The empirical analysis is made by using the data of EU-EUA carbon emission option under the COVID-19. The empirical results show that compared with the fractional Brownian motion model (FBM) based on GARCH, the RSJM-RBF carbon emission option pricing model proposed in this paper has higher prediction accuracy. Taking Pearson corre-lation coefficient as the index, the robustness analysis of the two models shows that the model es-tablished in this paper is more robust.
[1] | 田永, 李瑞强, 刘文静. COVID-19疫情前后欧盟碳金融市场的配额拍卖价格及启示——基于碳达峰、碳中和背景[J]. 价格月刊, 2021(8): 1-9. |
[2] | 杨成玉. 欧盟绿色复苏对中欧经贸关系的影响[J]. 国际贸易, 2020(9): 54-60. |
[3] | 王信, 杨娉, 姜晶晶, 等. 疫情冲击对绿色发展和气候相关风险防范的影响[J]. 中国改革, 2020(6): 55-60. |
[4] | 杨成玉. 欧盟复苏计划及其潜在效应[J]. 现代国际关系, 2020(8): 25-32. |
[5] | 江瑞. 基于蒙特卡罗模拟法的中国核证自愿减排量(CCER)碳排放权价值评估研究[D]: [硕士学位论文]. 重庆: 重庆理工大学, 2018. |
[6] | Liu, Z.B. and Huang, S. (2019) Research on Pricing of Carbon Options Based on GARCH and B-S Model. Journal of Applied Science and Engineering Innovation, 6, 109-116. |
[7] | 韩丹丹. 基于实物期权的企业碳交易决策研究[D]: [硕士学位论文]. 天津: 天津工业大学, 2019. |
[8] | 朱跃钊, 陈红喜, 赵智敏. 基于B-S定价模型的碳排放权交易定价研究[J]. 科技进步与对策, 2013, 30(5): 27-30. |
[9] | Merton, R.C. (1976) Option Pricing When Un-derlying Stock Returns Are Discontinuous. Journal of Financial Economics, 3, 125-144. https://doi.org/10.1016/0304-405X(76)90022-2 |
[10] | Kou, S.G. (2002) A Jump-Diffusion Model for Option Pric-ing. Management Science, 48, 1086-1101.
https://doi.org/10.1287/mnsc.48.8.1086.166 |
[11] | Palao, F. and Pardo, A. (2012) Assessing Price Clustering in Eu-ropean Carbon Markets. Applied Energy, 92, 51-56.
https://doi.org/10.1016/j.apenergy.2011.10.022 |
[12] | 陈晓红, 王陟昀. 欧洲碳排放权交易价格机制的实证研究[J]. 科技进步与对策, 2010, 27(19): 142-147. |
[13] | 王恺, 邹乐乐, 魏一鸣. 欧盟碳市场期货价格分布特征分析[J]. 数学的实践与认识, 2010, 40(12): 59-65. |
[14] | 张帅, 梁龙跃. 基于Heston模型的上证50ETF期权定价及动态对冲研究[J]. 中国物价, 2021(12): 56-58. |
[15] | 韦伟, 潘泽瀚. 基于Garch模型碳排放期权定价方法研究[J]. 中国外资, 2014(1): 131-132. |
[16] | 徐静, 储盼, 任庆忠. 碳排放权期权定价及实证研究[J]. 统计与决策, 2015(6): 162-165. |
[17] | Hung, J.C., Liu, H.C. and Yang, J.J. (2020) Improving the Realized GARCH’s Volatility Forecast for Bitcoin with Jump-Robust Estimators. The North American Journal of Economics and Finance, 52, Article ID: 101165.
https://doi.org/10.1016/j.najef.2020.101165 |
[18] | 张晨, 彭婷, 刘宇佳. 基于GARCH-分形布朗运动模型的碳排放权期权定价研究[J]. 合肥工业大学学报(自然科学版), 2015(38): 1553-1558. |
[19] | Liu, Z. and Huang, S. (2020) Carbon Option Price Forecasting Based on Modified Fractional Brownian Motion Optimized by GARCH Model in Carbon Emission Trading. The North American Journal of Economics and Finance, 55, Article ID: 101307. https://doi.org/10.1016/j.najef.2020.101307 |
[20] | 刘悦, 杨爱军, 林金官. 基于机制转换模型的碳排放权期权定价[J]. 数理统计与管理, 2019, 38(2): 225-234. |
[21] | 宋晓迪. 基于实物期权法的碳资产评估研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2017. |
[22] | 李响楚涵. 基于RBF神经网络的实物期权定价研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020. |
[23] | Li, C.Y., Chen, S.N. and Lin, S.K. (2016) Pricing Derivatives with Modeling CO2 Emission Allowance Using a Regime-Switching Jump Diffusion Model: With Regime-Switching Risk Premium. European Journal of Finance, 22, 887-908. https://doi.org/10.1080/1351847X.2015.1050526 |
[24] | Chevallier, J. (2009) Carbon Futures and Macroeconomic Risk Factors: A View from the EU ETS. Energy Economics, 31, 614-625. https://doi.org/10.1016/j.eneco.2009.02.008 |
[25] | Xu, Y., Luo, M., Tao, L., et al. (2017) ECG Signal De-Noising and Baseline Wander Correction Based on CEEMDAN and Wavelet Threshold. Sensors, 17, 2754. https://doi.org/10.3390/s17122754 |
[26] | Jwa, B., Xin, S.A., Qian, C.A., et al. (2021) An Innovative Random For-est-Based Nonlinear Ensemble Paradigm of Improved Feature Extraction and Deep Learning for Carbon Price Forecast-ing. Science of the Total Environment, 762, Article ID: 143099. https://doi.org/10.1016/j.scitotenv.2020.143099 |
[27] | Zhou, J.G. and Chen, D.F. (2021) Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm. Sustainability, 13, 4896. https://doi.org/10.3390/su13094896 |
[28] | 陈金龙. 实物期权定价理论与方法研究[D]: [博士学位论文]. 天津: 天津大学, 2003. |
[29] | Naik, K.S. (2021) Predicting Credit Risk for Unsecured Lending: A Machine Learn-ing Approach. |
[30] | Richman, J.S. and Randall, M.J. (2000) Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. American Journal of Physiology Heart & Circulatory Physiology, 278, H2039.
https://doi.org/10.1152/ajpheart.2000.278.6.H2039 |
[31] | Zhang, Y., Chen, B., Pan, G., et al. (2019) A Novel Hy-brid Model Based on VMD-WT and PCA-BP-RBF Neural Network for Short-Term Wind Speed Forecasting. Energy Conversion and Management, 195, 180-197.
https://doi.org/10.1016/j.enconman.2019.05.005 |
[32] | Liu, D.Z., Jiang, T., Zhang, Y.C., et al. (2021) Forecast Model of Airport Haze Visibility and Meteorological Factors Based on SVR-RBF Model. IOP Conference Series: Earth and Environmental Science, 657, Article ID: 012029.
https://doi.org/10.1088/1755-1315/657/1/012029 |
[33] | 杨昌辉, 邵臻, 刘辰, 付超. 一种混合建模方法及其在ETF期权定价中的应用[J]. 中国管理科学, 2020, 28(12): 44-53. |
[34] | 胡贝贝. 基于多因素的国际碳市场价格预测研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2017. |
[35] | 彭紫君. 基于改进果蝇优化算法的欧盟碳价预测[D]: [硕士学位论文]. 武汉: 中南财经政法大学, 2019. |
[36] | 何晓蓉. 基于体制转换与模糊跳扩散过程的欧式期权定价[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2016. |
[37] | 蔡婉贞, 黄翰. 基于BP-RBF神经网络的组合模型预测港口物流需求研究[J]. 郑州大学学报(工学版), 2019, 40(5): 84-90. |