|
两种优化小波阈值算法对紫外可见光谱的水质COD数据去噪研究
|
Abstract:
本文主要检测水质COD数据,对数据进行去噪处理,为建立预测水质COD模型提供数据预处理奠定基础。紫外可见光谱检测水质COD数据系统易产生光学仪器本身和外界散射光的噪声影响,得到光谱数据存在不必要的噪声。为开展去噪效果评价,实验稀释了COD浓度为20 mg/L的邻苯二甲酸氢钾溶液来得到了30组水质COD光谱数据,将六种算法去噪效果相互对比,得出灰狼优化小波阈值算法更适合用于去除水质COD数据噪声的结论。为了验证两种优化算法去噪的可行性,采集某内陆河地表水质COD光谱数据进行实例去噪分析。比较两种优化算法的去噪参数评价,灰狼优化小波阈值算法能更好抑制了噪声和提高了系统检测精度,为紫外可见光谱法的水质COD数据的去噪处理提供了一种全新的解决办法,证明了两种优化小波阈值算法适用于地表水质COD数据去噪分析的可行性。
This paper mainly detects the COD data of water quality and denoises the data, which lays a foundation for data preprocessing to establish the COD model for predicting water quality. The UV-VIS spectrum detection water quality COD data system is easy to produce the noise influence of the optical instrument itself and the external scattered light, and there is unnecessary noise in the spectral data. In order to evaluate the denoising effect, 30 groups of water quality COD spectral data were obtained by diluting the potassium hydrogen phthalate solution with COD concentration of 20 mg/L. The denoising effects of the six algorithms were compared with each other, and it was concluded that the gray wolf optimized wavelet threshold algorithm was more suitable for removing the noise of water quality COD data. In order to verify the feasibility of the two optimization algorithms, COD spectral data of surface water quality of an inland river were collected for example denoising analysis. Comparing the denoising parameter evaluation of the two optimization algorithms, the gray wolf optimized wavelet threshold algorithm can better suppress the noise and improve the detection accuracy of the system. It provides a new solution for the denoising of water quality COD data by UV-VIS spectroscopy, and proves that the two optimized wavelet threshold algorithms are suitable for the denoising analysis of surface water quality COD data.
[1] | 楼显盛, 陈安瑶, 张研, 林强, 罗安程, 梁志伟. 浙江省农村生活污水电导率与水质指标的响应关系分析[J]. 环境监测管理与技术, 2022, 34(1): 64-67.
LOU Xiansheng, CHEN Anyao, ZHANG Yan, LIN Qiang, LUO Ancheng and LIANG Zhiwei. Analysis on the response relationship between conductivity and water quality index of rural domestic sewage in Zhejiang Province. Environmental Monitoring Management and Technology, 2022, 34 (1): 64-67. (in Chinese) |
[2] | 孟庆龙, 尚静, 黄人帅, 撒雄星, 张艳. 不同成熟度猕猴桃糖度紫外可见光谱检测[J]. 食品研究与开发, 2020, 41(21): 167-172.
MENG Qinglong, SHANG Jing, HUANG Renshuai, SA Xiongxing and ZHANG Yan. Determination of sugar content of kiwifruit with different maturity by UV-VIS spectroscopy. Food Research and Development, 2020, 41(21): 167-172. (in Chinese) |
[3] | 陈鑫, 周真, 杨旭, 郭抗抗, 李迪星. 紫外-可见光谱法定量检测牛奶菌群总数的研究[J]. 分析测试学报, 2017, 36(9): 1109-1113.
CHEN Xin, ZHOU Zhen, YANG Xu, GUO Kangkang and LI Dixing. Study on quantitative detection of total number of milk flora by UV-VIS spectroscopy. Journal of Analysis and Testing, 2017, 36(9): 1109-1113. (in Chinese) |
[4] | 张金秋, 沈锡田. 热处理绿黄色磷灰石的紫外-可见光谱[J]. 宝石和宝石学杂志, 2018, 20(S1): 33-34.
ZHANG Jinqiu, SHEN Xitian. UV-VIS spectra of heat-treated green yellow apatite. Journal of Gemology and Gemology, 2018, 20(S1): 33-34. (in Chinese) |
[5] | 周曙光, 甄汉深, 甄丹丹, 韦锦梅, 潘洪平. 玉米苞叶药材提取液紫外-可见光谱鉴别的初步研究[J]. 中国临床新医学, 2018, 11(9): 899-902.
ZHOU Shuguang, ZHEN Hanshen, ZHEN Dandan, WEI Jinmei and PAN Hongping. Preliminary study on identification of corn bract extract by UV-VIS spectroscopy. China New Clinical Medicine, 2018, 11(9): 899-902. (in Chinese) |
[6] | 汤斌, 魏彪, 毛本将, 赵敬晓, 冯鹏. 紫外-可见吸收光谱法水质检测系统的噪声分析与处理研究[J]. 激光与光电子学进展, 2014, 51(4): 201-207.
TANG Bin, WEI Biao, MAO benjiang, ZHAO Jingxiao and FENG Peng. Study on noise analysis and treatment of water quality detection system by UV-VIS absorption spectroscopy. Progress in Laser and Optoelectronics, 2014, 51(4): 201-207. (in Chinese) |
[7] | 孙然然, 林玉娥, 梁兴柱. 一种新的阈值和阈值函数的小波去噪算法[J]. 佳木斯大学学报(自然科学版), 2021, 171(2): 63-66.
SUN Ranran, LIN Yu’e and LIANG Xingzhu. A new wavelet denoising algorithm based on threshold and threshold function. Journal of Jiamusi University (Natural Science Edition), 2021, 171(2): 63-66. (in Chinese) |
[8] | 唐标, 沈映泉, 黄绪勇, 肖登宇, 张粥. 基于改进型蚁群算法和图像识别的变电站机器人路径规划和设备缺陷识别研究[J]. 制造业自动化, 2022, 44(2): 46-52.
TANG Biao, SHEN Yingquan, HUANG Xuyong, XIAO Dengyu and ZHANG Zhou. Research on substation robot path planning and equipment defect recognition based on improved ant colony algorithm and image recognition. Manufacturing Automation, 2022, 44(2): 46-52. (in Chinese) |
[9] | WANG, Q. Y., ZHOU, G. Q., SONG, R. H., XIE, Y. F., LUO, M. Y. and YUE, T. Continuous space ant colony algorithm for automatic selection of orthophoto mosaic seam-line network. Journal of Photogrammetry and Remote Sensing, 2022, 186(10): 201-217. |
[10] | 吕琳, 尉永清, 任敏, 潘晓. 基于蚁群优化算法的凝聚型层次聚类[J]. 计算机应用研究, 2017, 34(1): 114-117.
LV Lin, WEI Yongqing, REN Min and PAN Xiao. Agglomerative hierarchical clustering based on ant colony optimization algorithm. Computer Application Research, 2017, 34(1): 114-117. (in Chinese) |
[11] | 张英芝, 朱继微, 刘津彤, 翟粉莉, 牟黎明. 改进灰狼算法优化灰色预测模型在数控机床中的应用[J]. 制造技术与机床, 2022(3): 127-131.
ZHANG Yingzhi, ZHU Jiwei, LIU Jintong, ZHAI Fenli and MOU Liming. Application of improved grey wolf algorithm to optimize grey prediction model in NC machine tool. Manufacturing Technology and Machine Tools, 2022(3): 127-131. (in Chinese) |
[12] | MOHAMMED, A. E., ABOBAKR, A. S. and NEHAL, E. Hybrid grey wolf optimization-based Gaussian process regression model for simulating deterioration behavior of highway tunnel components. Processes, 2021, 10(1): 36.
https://doi.org/10.3390/pr10010036 |