全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于有限元应变能量信息致密砂岩储层裂缝甜点预测
Fracture Sweet Spot Prediction of Tight Sandstone Reservoirs Based on Finite Element Strain Energy Information

DOI: 10.12677/AG.2022.125058, PP. 573-581

Keywords: 致密砂岩储层,有限元,应变能量,产能,鄂尔多斯盆地
Tight Sandstone Reservoir
, Finite Element, Strain Energy, Productivity, Ordos Basin

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用有限元法构建了致密砂岩储层的甜点预测方法。应变能量(U)能定量表征不同类型岩石介质内部微尺度破裂发生的概率。其具体步骤为:首先,建立低幅度构造区地质模型,以相控原则对岩石力学参数进行了赋值,通过边界施加载荷恢复了目的层在燕山期的古构造应力场;然后,根据能量守恒原理求取目的层的应变能量密度分布。U值的平面分布具有明显呈带状分布的特征。分析了应变能量密度与低幅构造区强非均质性致密砂岩储层产能之间的关系,符合率较高。高应变能量区为甜点区。本文基于U值定义的甜点主要是从岩体变形及破裂角度进行的分析。在实际勘探过程中,还应考虑储层物性及保存条件等地质因素。本文建立了一套系统的基于U值计算的甜点预测方法。该方法适用于鄂尔多斯盆地低幅构造区强非均质性致密砂岩储层。
In this paper, the finite element method is used to construct a sweet spot prediction method for tight sandstone reservoirs. Strain energy (U) can quantitatively characterize the probability of micro-scale fractures in different types of rock media. The specific steps are: first, establish a geological model of the low-amplitude structural zone, assign values to the rock mechanics parameters based on the phase control principle, and restore the paleo-tectonic stress field of the target layer in the Yanshanian period through the boundary load. Then, according to the principle of energy conservation, the strain energy density distribution of the target layer is obtained. The plane distribution of U value has obvious characteristics of band-like distribution. The relationship between strain energy density and productivity of tight sandstone reservoirs with strong heterogeneity in low-amplitude structural areas is analyzed, with a high coincidence rate. The high strain energy zone is the sweet spot. In this paper, the sweet spot defined by the U value is mainly analyzed from the perspective of rock deformation and fracture. In the actual exploration process, geological factors such as reservoir physical properties and preservation conditions should also be considered. This paper establishes a systematic dessert prediction method based on U value calculation. This method is suitable for tight sandstone reservoirs with strong heterogeneity in the low-amplitude structural area of the Ordos Basin.

References

[1]  李书恒, 方国庆, 杨金龙, 廖建波, 樊建明. 鄂尔多斯盆地超低渗透储层成因研究及意义[J]. 岩性油气藏, 2012, 24(6): 32-37.
[2]  Shuai, Y., Zhang, S., Mi, J., Gong, S., Yuan, X., Yang, Z., Liu, J. and Cai, D. (2013) Charging Time of Tight Gas in the Upper Paleozoic of the Ordos Basin, Central China. Organic Geochemistry, 64, 38-46.
https://doi.org/10.1016/j.orggeochem.2013.09.001
[3]  杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11.
[4]  Zhao, J.L., Tang, D.Z., Qin, Y., Xu, H., Lyu, Y.M., Tao, S. and Li, S. (2017) Evaluation of Fracture System for Coal Macrolithotypes in the Hancheng Block, Eastern Margin of the Ordos Basin, China. Journal of Petroleum Science and Engineering, 159, 799-809.
https://doi.org/10.1016/j.petrol.2017.09.031
[5]  Ridd, M.F. and Watkinson, I. (2013) The Phuket-Slate Belt Terrane: Tectonic Evolution and Strike-Slip Emplacement of a Major Terrane on the Sundaland Margin of Thailand and Myanmar. Proceedings of the Geologist’s Association, 124, 994-1010.
https://doi.org/10.1016/j.pgeola.2013.01.007
[6]  Morley, C.K. (2013) Discussion of Tectonic Models for Cenozoic Strike-Slip Fault-Affected Continental Margins of Mainland SE Asia. Journal of Asian Earth Sciences, 76, 137-151.
https://doi.org/10.1016/j.jseaes.2012.10.019
[7]  Nickelsen, R.P. (2009) Overprinted Strike-Slip Deformation in the Southern Valley and Ridge in Pennsylvania. Journal of Structural Geology, 31, 865-873.
https://doi.org/10.1016/j.jsg.2009.02.001
[8]  Nenna, F. and Aydin, A. (2011) The Role of Pressure Solution Seam and Joint Assemblages in the Formation of Strike-Slip and Thrust Faults in a Compressive Tectonic Setting; The Variscan of South-Western Ireland. Journal of Structural Geology, 33, 1595-1610.
https://doi.org/10.1016/j.jsg.2011.09.003
[9]  Su, X.B., Lin, X.Y., Zhao, M.J., Song, Y. and Liu, S. (2005) The Upper Paleozoic Coalbed Methane System in the Qinshui Basin, China. AAPG Bulletin, 89, 81-100.
https://doi.org/10.1306/07300403125
[10]  梁建设, 王存武, 柳迎红, 高印军, 杜江峰, 冯汝勇, 等. 沁水盆地致密气成藏条件与勘探潜力研究[J]. 天然气地球科学, 2015, 25(10): 1509-1519.
[11]  Shao, L.Y., Yang, Z.Y., Shang, X.X., Xiao, Z.-H., Wang, S., Zhang, W.-L., et al. (2015) Lithofacies Palaeogeography of the Carboniferous and Permian in the Qinshui Basin, Shanxi Province, China. Journal of Palaeogeography, 4, 384-412.
https://doi.org/10.1016/j.jop.2015.06.001
[12]  Nelson, E.J., Meyer, J.J. and Hillis, R.R. (2005) Transverse Drill-ing-Induced Tensile Fractures in the West Tuna Area, Gippsland Basin, Australia: Implications for the in Situ Stress Regime. International Journal of Rock Mechanics and Mining Sciences, 42, 361-371.
https://doi.org/10.1016/j.ijrmms.2004.12.001
[13]  Nelson, R.A. (1985) Geological Analysis of Naturally Fractured Reservoirs. Gulf Publishing Company, Houston, 8-26.
[14]  李月, 林玉祥, 于腾飞. 沁水盆地构造演化及其对游离气藏的控制作用[J]. 桂林理工大学学报, 2011, 31(4): 481-487.
[15]  王兆清. 多边形有限元研究进展[J]. 力学进展, 2006, 36(3): 344-353.
[16]  李邵军, 冯夏庭, 王威, 周辉. 岩土工程中基于栅格的三维地层建模及空间分析[J]. 岩石力学与工程学报, 2007, 26(3): 532-537.
[17]  Camac, B.A. and Hunt, S.P. (2009) Predicting the Regional Distribution of Fracture Networks Using the Distinct Element Numerical Method. AAPG Bulletin, 93, 1571-1583.
https://doi.org/10.1306/07230909040
[18]  王珂, 张惠良, 张荣虎, 王俊鹏, 戴俊生, 杨学君. 超深层致密砂岩储层构造裂缝特征及影响因素[J]. 石油学报, 2016, 37(6): 715-727+742.
[19]  Kattenhorn, S.A., Aydin, A. and Pollard, D.D. (2000) Joints at High Angles to Normal Fault Strike: An Explanation Using 3-D Numerical Models of Fault Perturbed Stress Fields. Journal of Structural Geology, 22, 1-23.
https://doi.org/10.1016/S0191-8141(99)00130-3
[20]  Pei, Y.W., Paton, D.A., Knipe, R.J. and Wu, K. (2015) A Review of Fault Sealing Behavior and Its Evaluation in Siliciclastic Rocks. Earth-Science Reviews, 150, 121-138.
https://doi.org/10.1016/j.earscirev.2015.07.011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133