全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Application of Thermally Expandable Microspheres in Adhesives: Review

DOI: 10.4236/ojpchem.2022.122005, PP. 80-92

Keywords: Microspheres, Expandable, Adhesive, Heat, Packaging

Full-Text   Cite this paper   Add to My Lib

Abstract:

Adhesives are used to bond various substrates such as metals, polymers, ceramics, rubber, wood and wood-based products. The use of adhesive as bonding agent rather than mechanical fasteners like nails results in the potential for reduced cost and weight of assemblies. However, adhesives are unprotected to a wide range of conditions, such as thermo-mechanical cycling in the environment, creep and fatigue imposed by structural joint configurations, and residual stress due to mismatch of thermal expansion between adhesives and objects. Thus, there will be a need for development of new chemistries and processes for easy repair and reprocessing of bonded structures are becoming of current great interest for the industries. In some cases, to improve the protection of various items/objects during handling and transportation, currently used protective products such as padded wraps, envelopes, packages and containers need to be modified. One technology which can solve the problem is the adhesives modified with thermally expandable particles (TEPs) which can be dismounted by heating the joint in a few seconds. The expandable composition is providing the necessary protective insulation and cushioning required in packages and containers. This paper reviews the application of unexpanded microspheres in the adhesive segment.

References

[1]  Adams, R.D. and Wake, W.C. (1984) Structural Adhesive Joints in Engineering. International Journal of Adhesion and Adhesives, 4, 198.
https://doi.org/10.1016/0143-7496(84)90049-6
[2]  Banea, M.D. and da Silva, L.F.M. (2009) Adhesively Bonded Joints in Composite Materials: An Overview. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 223, 1-18.
https://doi.org/10.1243/14644207JMDA219
[3]  Kumar, S.B., Sivashanker, S., Bag, A. and Sridhar, I. (2005) Failure of Aerospace Composite Scarf-Joints Subjected to Uniaxial Compression. Materials Science and Engineering: A, 412, 117-122.
https://doi.org/10.1016/j.msea.2005.08.033
[4]  Banea, M.D., da Silva, L.F.M., Campilho, R.D.S.G. and Sato, C. (2013) Smart Adhesive Joints: An Overview of Recent Developments. The Journal of Adhesion, 90, 16-40.
https://doi.org/10.1080/00218464.2013.785916
[5]  Nishiyama, Y. and Sato, C. (2006) Behavior of Dismantlable Adhesives Including Thermally Expansive Microcapsules. In: Possart, W., Ed., Adhesion: Current Research and Applications, Wiley-VCH, Weinheim, 555-568.
https://doi.org/10.1002/3527607307.ch34
[6]  Brown, E.N., Kessler, M.R., Sottos, N.R. and White, S.R. (2003) In Situ Poly(Urea-Formaldehyde) Microencapsulation of Dicyclopentadiene. Journal of Microencapsulation, 20, 719-730.
[7]  Staub, N.W., Iovu, T., Byrne, J.T., Murphy, K.A., Bernarding, M.P. and Ling, H.W. (2016) Protective Packaging and Methods of Making the Same. US20180099206A1.
[8]  Sugita, H., Itou, K., Itou, Y., Wada, N., Kurita, T.U.S., Hirose, Y., Hatase, K., Matsumoto, H. and Ichinohe, D. (2020) Multi-Acrylate-Based UV-Curable Dismantlable Adhesives. International Journal of Adhesion and Adhesives, 104, Article ID: 102758.
https://doi.org/10.1016/j.ijadhadh.2020.102758
[9]  Campilho, R.D.S.G., de Moura, M.F.S.F., Ramantani, D.A., Morais, J.J.L. and Domingues, J.J.M.S. (2009) Tensile Behaviour of Three-Dimensional Carbon-Epoxy Adhesively Bonded Single- and Double-Strap Repairs. International Journal of Adhesion and Adhesives, 29, 678-686.
https://doi.org/10.1016/j.ijadhadh.2009.02.004
[10]  Woo, I.Y. and Lyu, M.Y. (2021) Adhesive Strength between Metal Sheet Plated Using Micro Particles and ABS Resin. Macromolecular Research, 29, 297-305.
https://doi.org/10.1007/s13233-021-9036-1
[11]  Banea, M.D., da Silva, L.F.M., Carbas, R.J.C., Barbosa, A.Q., de Barros, S. and Viana, G. (2018) Effect of Water on the Behaviour of Adhesives Modified with Thermally Expandable Particles. International Journal of Adhesion and Adhesives, 84, 250-256.
https://doi.org/10.1016/j.ijadhadh.2018.04.002
[12]  Sun, Z., Hu, X. and Chen, H. (2014) Effects of Aramid-Fibre Toughening on Interfacial Fracture Toughness of Epoxy Adhesive Joint between Carbon-Fibre Face Sheet and Aluminium Substrate. International Journal of Adhesion and Adhesives, 48, 288-294.
https://doi.org/10.1016/j.ijadhadh.2013.09.023
[13]  Expancel Homepage (2012).
http://www.akzonobel.com/expancel/
[14]  Mori, M., Fukutomi, T., Shirokawa, T., Sugiyama, T., Takeda, S., Masuda, T. and Shirakabe, Y. (2006) Rubber Composition for the Tire and Pneumatic Tire Made Therefrom. US9481783B2.
[15]  Good, B.T. and Ebeling, T.A. (2008) Enhanced Sound Absorption in Thermoplastic Composites. US20080008869A1.
[16]  Tomalino, M. and Bianchini, G. (1997) Heat-Expandable Microspheres for Car Protection Production. Progress in Organic Coatings, 32, 17-24.
https://doi.org/10.1016/S0300-9440(97)00080-5
[17]  Andersson, L. and Bergström, L. (2008) Gas-Filled Microspheres as an Expandable Sacrificial Template for Direct Casting of Complex-Shaped Macroporous Ceramics. Journal of the European Ceramic Society, 28, 2815-2821.
https://doi.org/10.1016/j.jeurceramsoc.2008.04.020
[18]  Nishiyama, Y., Uto, N., Sato, C. and Sakurai, H. (2003) Dismantlement Behavior and Strength of Dismantlable Adhesive Including Thermally Expansive Particles. International Journal of Adhesion and Adhesives, 23, 377-382.
https://doi.org/10.1016/S0143-7496(03)00067-8
[19]  Usuba, M., Hongo, C., Matsumoto, T. and Nishino, T. (2018) On-Demand Easy Peeling of Acrylic Adhesives Containing Ionic Liquids through a Microwave Irradiation Stimulus. Polymer Journal, 50, 1051-1056.
[20]  Getty, K., Waski, D., Kriedl, A., McLeod, B., Huang, T.J., Kiley, S., Carter, S. and Menolascino, J. (2018) Process for Forming Improved Protective Eco-Friendly Pouch and Packaging and Products Made Therefrom. US20200247105A1.
[21]  Lu, Y.C. and Ming, J.J. (2020) Hot-Melt Adhesive for Bonding Paper of Cigarette Holder Filter Rod and Its Preparation Method. CN111019570A.
[22]  Dastjerdi, Z., Cranston, E.D. and Dubé, M.A. (2018) Pressure Sensitive Adhesive Property Modification Using Cellulose Nanocrystals. International Journal of Adhesion and Adhesives, 81, 36-42.
https://doi.org/10.1016/j.ijadhadh.2017.11.009
[23]  Fu, T.Z., Cook, M.R. and Ellis, E.R. (2013) Microwave Heating of Heat-Expandable Materials for Making Packaging Substrates and Products. US20130303351A1.
[24]  Loomis, J., Xu, P. and Panchapakesan, B. (2013) Stimuli-Responsive Transformation in Carbon Nanotube/Expanding Microsphere-Polymer Composites. Nanotechnology, 24, Article ID: 185703.
https://doi.org/10.1088/0957-4484/24/18/185703
[25]  Banea, M.D., Rosioara, M., Carbas, R.J.C. and da Silva, L.F.M. (2018) Multi-Material Adhesive Joints for Automotive Industry. Composites Part B: Engineering, 151, 71-77.
https://doi.org/10.1016/j.compositesb.2018.06.009
[26]  Wang, L., Yang, X., Zhang, J., Zhang, C. and He, L. (2014) The Compressive Properties of Expandable Microspheres/Epoxy Foams. Composites Part B: Engineering, 56, 724-732.
https://doi.org/10.1016/j.compositesb.2013.09.030
[27]  De Luca, N.P. (1994) Inflatable Flat Bag Packaging Cushion and Methods of Operating and Making the Same. US5454642A.
[28]  Jin, H., Mangun, C.L., Stradley, D.S., Moore, J.S., Sottos, N.R. and White, S.R. (2012) Self-Healing Thermoset Using Encapsulated Epoxy-Amine Healing Chemistry. Polymer, 53, 581-587.
https://doi.org/10.1016/j.polymer.2011.12.005
[29]  Lu, Y., Broughton, J. and Winfield, P. (2014) A Review of Innovations in Disbonding Techniques for Repair and Recycling of Automotive Vehicles. International Journal of Adhesion and Adhesives, 50, 119-127.
https://doi.org/10.1016/j.ijadhadh.2014.01.021
[30]  Lu, Y., Broughton, J. and Winfield, P. (2016) Surface Modification of Thermally Expandable Microspheres for Enhanced Performance of Disbondable Adhesive. International Journal of Adhesion and Adhesives, 66, 33-40.
https://doi.org/10.1016/j.ijadhadh.2015.12.007
[31]  Banea, M.D., da Silva, L.F.M. and Carbas, R.J.C. (2015) Debonding on Command of Adhesive Joints for the Automotive Industry. International Journal of Adhesion and Adhesives, 59, 14-20.
https://doi.org/10.1016/j.ijadhadh.2015.01.014
[32]  Barner, L. (2009) Synthesis of Microspheres as Versatile Functional Scaffolds for Materials Science Applications. Advanced Materials, 21, 2547-2553.
https://doi.org/10.1002/adma.200990116
[33]  Uratani, Y., Sekiguchi, Y. and Sato, C. (2017) Expansion Characteristics of Thermally Expandable Microcapsules for Dismantlable Adhesive under Hydrostatic Pressure or in Resin. The Journal of Adhesion, 93, 771-790.
https://doi.org/10.1080/00218464.2017.1306442
[34]  Inoue, M., Aoyagi, H., Yamamoto, M., Yamada, T. and Kimura, S. (1992) Process for the Production of Composite Molded Articles. US5242637A.
[35]  Komatsu, K., Yamada, T. and Ohwatari, T. (1988) Paint Peeling Composition and Paint Peeling Method. US4844833A.
[36]  Sakurai, H., et al. (1998) Evaluation of Adhesive Properties of Elastomeric Adhesive. The Development and Utilization of the Removable Adhesive. Bulletin of Shizuoka Industrial Technology Research Center, 43, 11-16.
[37]  Ishikawa, H. (2001) Development of Bonding and Debonding Technology Meeting Recycle Requirements. Proceedings of JSME Colloquium, No. 01-86, 5-8.
[38]  Yi, Q., Li, J., Zhang, R., Ma, E. and Liu, R. (2020) Preparation of Small Particle Diameter Thermally Expandable Microspheres under Atmospheric Pressure for Potential Utilization in Wood. Journal of Applied Polymer Science, 138, Article ID: 49734.
https://doi.org/10.1002/app.49734
[39]  Katoh, K., Saeki, N., Higashi, E., Hirose, Y., Sugimoto, M. and Nakano, K. (2013) Thermal Behavior and Dismantlability of Adhesives Containing Various Inorganic Salts. Journal of Thermal Analysis and Calorimetry, 113, 1275-1279.
https://doi.org/10.1007/s10973-013-3233-x
[40]  Banea, M.D., da Silva, L.F.M., Carbas, R.J. and Campilho, R.D.S.G. (2014) Mechanical and Thermal Characterization of a Structural Polyurethane Adhesive Modified with Thermally Expandable Particles. International Journal of Adhesion and Adhesives, 54, 191-199.
https://doi.org/10.1016/j.ijadhadh.2014.06.008
[41]  Pausan, N., Liu, Y., Lu, Y. and Hutchinson, A.R. (2016) The Use of Expandable Graphite as a Disbonding Agent in Structural Adhesive Joints. The Journal of Adhesion, 93, 791-810.
https://doi.org/10.1080/00218464.2016.1226169
[42]  Xie, G., Wang, Z. and Bao, Y. (2020) Expansion Properties and Diffusion of Blowing Agent for Vinylidene Chloride Copolymer Thermally Expandable Microspheres. Materials, 13, Article No. 3673.
https://doi.org/10.3390/ma13173673
[43]  Liang, S., Hu, J., Li, Z., Lin, S., Tu, Y. and Huang, Z. (2019) Thermally Expandable Nanocapsules Obtained from Surfactant-Free Emulsion Polymerization. Journal of Macromolecular Science, Part A, 57, 274-282.
https://doi.org/10.1080/10601325.2019.1691454
[44]  Banea, M.D., Da Silva, L.F.M., Carbas, R.J.C., Cavalcanti, D.K. and De Souza, L.F.G. (2019) The Effect of Environment and Fatigue Loading on the Behaviour of TEPs-Modified Adhesives. The Journal of Adhesion, 96, 423-436.
https://doi.org/10.1080/00218464.2019.1680546
[45]  Bandl, C., Kern, W. and Schlögl, S. (2020) Adhesives for “Debonding-on-Demand”: Triggered Release Mechanisms and Typical Applications. International Journal of Adhesion and Adhesives, 99, Article ID: 102585.
https://doi.org/10.1016/j.ijadhadh.2020.102585
[46]  Sato, C. and Kyokaishi, S. (2014) Recent Trends of Dismantlable Adhesives. Journal of the Japan Society of Colour Material, 87, 245-249.
[47]  Curd, M.E., Morrison, N.F., Smith, M.J.A., Gajjar, P., Yousaf, Z. and Parnell, W.J. (2021) Geometrical and Mechanical Characterisation of Hollow Thermoplastic Microspheres for Syntactic Foam Applications. Composites Part B: Engineering, 223, Article ID: 108952.
https://doi.org/10.1016/j.compositesb.2021.108952
[48]  Huang, T.J., Thompson, K., Layser, J., Harrington, J., Meccia, J. and Mammarella, R. (2013) Hot Melt Assist Water Borne Adhesives and Use Thereof. US9273230B2.
[49]  Fung, D.R., Hsu, S.H., Wu, H.H. and Juang, H.J. (2010) Water-Based Hot-Foam Adhesive Panel. US20110262737A1.
[50]  Yamamoto, M., Matsuoka, I. and Wakata, K. (2003) Adhesive Sheets with Good Adhesion to Rough Surfaces and Punching Processability. JP2003206458A.
[51]  Kajtna, J., Krajnc, M. and Golob, J. (2006) The Role of Components in Waterbased Microsphere Acrylic PSA Adhesive Properties. Macromolecular Symposia, 243, 132-146.
https://doi.org/10.1002/masy.200651114
[52]  Sun, W.X., Liu, F., Wang, J.W., Yang, Y. and Cao, J. (2017) Lightweight Paper Material Comprising Thermo-Expandable Microspheres and Preparation Method Thereof. CN106398256A.
[53]  Arai, H., Nishiuchi, M. and Murakami, J. (2010) Antislip Adhesive Sheet Having Expandable Microcapsule-Containing Antislip Layer. JP2010043167A.
[54]  Kimura, A. and Sugisaki, T. (2005) Heat-Peelable Pressure-Sensitive Adhesive Sheets with Good Interlayer Adhesion. JP2005187501A.
[55]  Fu, T. and Cook, M.R. (2017) Insulating Packaging for Hot Beverages or Food. US9648969B2.
[56]  Fu, T.Z., Subramanian, P. and Kahn, I. (2018) Insulated Laminates and Methods for Making Same. WO2018102558A1.
[57]  Huang, T.J., Thompson, K., Waski, D. and Getty, K. (2015) Adhesive for Insulative Articles. WO2015081097A1.
[58]  Bergenudd, H., Stenberg, E. and Nordin, J. (2006) Aqueous Slurry Containing Thermally Expandable Microspheres Useful for Paper or Nonwoven. WO2006068573A1.
[59]  Huang, T.J., Sandilla, R. and Waski, D. (2012) Improved Adhesive Having Insulative Properties. WO2012033998A2.
[60]  Nordin, J. and Gratz, S. (2006) Thermally Expandable Microsphere Aqueous Slurry and Process Thereof and the Process Includes Production of Paper or Nonwoven Materials. US20060134010A1.
[61]  Cheng, L.Y., Chen, M.K., Tan, T.X., Bi, F.W. and Zhang, X.Y. (2021) Heat-Sensitive Convex Paper Coating and Preparation Method Thereof. CN112609501A.
[62]  Ootake, I., Hyoshi, K. and Okada, T. (1996) Manufacture of Low-Density Paper by Using Thermally Expandable Microcapsules. JP08226097A.
[63]  Morita, M., Yamaguchi, T. and Matsui, H. (2007) Heat-Sensitive Adhesives and Materials Therefrom. JP2007077369A.
[64]  Zhang, X.T., Gao, Y., Cao, J., Zhang, H.D., Hu, Z.J. and Liu, F. (2019) Preparation and Application of Low-Temperature Heat-Expandable Microsphere. CN109134782A.
[65]  Jokinen, J. (2002) Coated Recycled Paper for Packaging Materials Comprising Paper Coated with Mixtures Containing Heat-Expandable Microparticles and Packaging Materials Therefrom. FR2816966A1.
[66]  McLeod, B., Kriegl, A., Getty, K., Waski, D. and Hu, T.J. (2022) Dielectric Heating of Foamable Compositions. Publication Number: 20220073787.
[67]  Huang, T.J., Thompson, K., Waski, D. and Gett, K. (2015) Expandable Coating Compositions and Use Thereof. US10100204B2.
[68]  Mo, Y., Xue, P., Yang, Q., Liu, H., Zhao, X., Wang, J., et al. (2021) Composite Slow-Release Fouling Release Coating Inspired by Synergistic Anti-Fouling Effect of Scaly Fish. Polymers, 13, Article No. 2602.
https://doi.org/10.3390/polym13162602
[69]  Nawaby, A.V., Watlington, V.G. and Hewitt, M.E. (2021) Crimped Cushioned Envelopes and Method of Forming the Same. US11046497B2.
[70]  Cooper, S., Richardson, L. and Goodman, S. (2019) Layered Protective Packaging. US20200317414A1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133