Studies
in urban dynamics have focused on population growth, urban sprawl and activities expansion to
determine, understand and study the phenomenon of urbanization in the world.
The methods used in these studies have explore remotely sense data from Global
Positioning Systems (GPS), satellite imagery, aerial and ground photography for
interpretation, analysis and explanation of urban land use and land cover
evolution. This data is often combined with ground observations and other
methods in social sciences to understand urban growth. In this article, data
is tapped from temperature differences analysis in multi-date satellite images
and combined with population statistics, human activities and infrastructure
build up to explain the phenomenon of urbanization. The results of the findings
will enrich our knowledge in Urban Geography on approaches and methods used in
understanding urbanization and its problems. Drawing on case study material
from Yaounde in Cameroon, this article examines how remote sensing techniques
can help in understanding urban heat island in Yaounde and its negative
outcomes on urban population, activity and the environment. As the study shows,
urban growth has a direct relation with temperature increase and an inverse
relation with vegetation change. Also, Increase in bare surfaces due to
deforestation for development and settlement increases surface temperature and
vice versa. Vegetation regulates surface temperature by absorbing energy from
solar radiation and remission in the form of latent heat through the process of
photosynthesis. Analysis of surface temperature increase through remote sensing
techniques, urban land use evolution, determinants and implications of Yaounde
heat islands constitute the focus of this paper. The implications of rise in
surface temperature and relations with urban growth are important for decision
making. This knowledge is essential for urban geography research, new
methodological approaches to urbanization and policy.
References
[1]
Anquez, P., & Harlem, A. (2011). Les Ilots de chaleur dans la région métropolitaine de Montréal: Cause (19 p.).
[2]
Bechtel, B. et al. (2012). Classification and Modelling of Urban Micro-Climates Using Multi-Sensoral and Multi-Temporal Remote Sensing Data. International Archives of the Photogrammetry, 39, 463-468. https://doi.org/10.5194/isprsarchives-XXXIX-B8-463-2012
[3]
Besancenot, J. P. (2002). Vagues de chaleur et mortalité dans les grandes agglomérations urbaines. Environnement, Risques & Santé, 1, 229-240.
[4]
BUCREP (2010). BUCREP—Population en chiffre. http://www.bucrep.cm/index.php/fr/recensements/3eme-rgph/20-3emergph/presentation/57-population-en-chiffre
[5]
Chen, X. I., Zhao, H. M., Li, P. X., & Yin, Z. Y. (2006). Remote Sensing Image-Based Analysis of Relationship between Urban Heat Island and Land Use/Cover Changes. Remote Sensing of Environment, 104, 133-146. https://doi.org/10.1016/j.rse.2005.11.016
[6]
Choaumo, T. B. (2012). Les lotissement urbains, indicateurs de l’étalement urbain de la ville de Yaoundé: Etude croisée par Télédétection (p. 67). Mémoire de Masters, Université de Yaoundé 1.
[7]
Conde, N. E. (2010). Les Ilots De Chaleur Urbains En Mauricie, Université du Québec, Trois-Rivières.
[8]
De Carolis, L. (2012). The Urban Heat Island Effect in Windsor, ON: An Assessment of Vulnerability and Mitigation Strategies. Diwangkari.
[9]
Filiatreault, Y. (2015). Changements Climatiques et Îlots de Chaleur: Indicateurs de Performance Pour les Mesures d’adaptation.
[10]
Gerland, P. (2020). Introduction: World Population Prospects 2021, Upgrade: Towards a More Open and Reproducible WPP, UN.
[11]
Giguere, M. (2009). Mesures de lutte aux îlots de chaleur urbains. Institut National de Santé Publique du Québec.
[12]
Leconte, F. (2014). Caractérisation des îlots de chaleur urbain par zonage climatique et mesures mobiles: Cas de Nancy. Université de Lorraine.
[13]
Mcsweeney, C., New, M., Lizcano, G., & Lu, X. (2010). The UNDP Climate Change Country Profiles: Improving the Accessibility of Observed and Projected Climate Information for Studies of Climate Change in Developing Countries. Bulletin of the American Meteorological Society, 91, 157-166. https://doi.org/10.1175/2009BAMS2826.1
[14]
Ntemngweh, P. (2022). Sustainable Urban Development Challenges and Nature Based Solutions: The Role of Greenspaces in Yaounde (p. 375). Undefended Ph.D. Thesis, University of Yaounde 1.
[15]
Ojuku, T., & Mengue, B. (2017). Urban Growth and Front Development on Risk Zones: GIS Application for Mapping of Impacts on Yaounde North Western Highlands. Current Urban Studies, 5, 217-235. https://doi.org/10.4236/cus.2017.52013
[16]
Ranagalage, M., Estoque, R. C., & Murayama, Y. (2017). An Urban Heat Island Study of the Colombo Metropolitan Area, Sri Lanka, Based on Landsat Data (1997-2017). International Journal of Geo-Information, 6, 189. https://doi.org/10.3390/ijgi6070189
[17]
Rogan, J., Ziemer, M., Martin, D., Ratick, S., Cuba, N., & DeLauer, V. (2013). The Impact of Tree Cover Loss on Land Surface Temperature: A Case Study of Central Massachusetts Using Landsat Thematic Mapper Thermal Data. Applied Geography, 45, 49-57. https://doi.org/10.1016/j.apgeog.2013.07.004
[18]
Sobrino, J., Jimenez, J., & Paolini, L. (2004). Land Surface Temperature Retrieval from Landsat TM5. Remote Sensing of Environment, 90, 434-440. https://doi.org/10.1016/j.rse.2004.02.003
[19]
Sundara, K. K. et al. (2012). Estimation of Land Surface Temperature to Study Urban Heat Island Effect Using Landsat ETM+ Image. International Journal of Engineering Science and Technology, 4, 770-778.
[20]
Tchindjang, M. et al. (2020). Land Use and Land Cover Changes in the Centre Region of Cameroon (p. 34).
[21]
Tomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. J. (2011). Including the Urban Heat Island in Spatial Heat Health Risk Assessment Strategies: A Case Study for Birmingham, UK. International Journal of Health Geographics, 10, 42. https://doi.org/10.1186/1476-072X-10-42
[22]
Yvonne, X. Y. N. (2015). A Study of Urban Heat Island Using “Local Climate Zones”—The Case of Singapore. International Journal of Environment and Climate Change, 5, 116-133. https://doi.org/10.9734/BJECC/2015/13051
[23]
Zanter, K., USGS, & LSDS CCB Chair (2016). Landsat 8 (L8) Data User Handbook.