全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Equilibrium Composition of a Plasma in the Low Voltage Air Circuit Breaker Contaminated by the Vapor of AgSnO2 Alloy Electrical Contacts

DOI: 10.4236/ampc.2022.125006, PP. 69-81

Keywords: Plasma, Electric Arc, Gibbs Free Energy, Circuit Breaker, Electrical Contacts, AgSnO2

Full-Text   Cite this paper   Add to My Lib

Abstract:

When the circuit breaker cuts the electric current, an electric arc is created between its electrodes. The success or failure of breaking the electric current by the circuit breaker depends strongly on the physico-chemical properties of the electric arc created, such as the composition of which depends on the material of the electrical contacts. In this work, we determine the equilibrium composition of the electric arc in the low voltage air circuit breaker with silver tin dioxide alloy contacts, in a temperature range from 500 K to 15,000 K and at atmospheric pressure. We use the Gibbs free energy minimization method and develop a computer code to determine the equilibrium composition of the created plasma. The analysis of the results obtained shows that O2 particles with a dissociation energy of 5.114 eV, NO with a dissociation energy of 6.503 eV,?and N2 dissociation 9.756 eV dissociate around 3500 K, 5000 K,?and 7500 K, respectively. We note that the electro-neutrality is established between the electrons and the cations: Ag+ and NO+, for temperatures lower than 6500 K. For temperatures higher than 6500 K, the electro-neutrality is established between the electrons and the cations: N+, O+,?and Ag+. The numerical density of the electrons increases when the proportion of the vapor of the electrical contacts increases in the mixture, in particular for temperatures lower than 11,000 K.

References

[1]  Abbaoui, M., Cheminat, B. and Andanson, P. (1985) Influence de la nature du metal sur la conductivité d’un plasma argon-métal. Journal of Physics D: Applied Physics, 18, L159-L165.
https://doi.org/10.1088/0022-3727/18/10/002
[2]  Bendjebbar, F., André, P., Benbakkar, M., Rochette, D., Flazi, S. and Vacher, D. (2012) Plasma Formed in Argon, Acid Nitric and Water Used in Industrial ICP Torches. Plasma Science and Technology, 14, 683.
https://doi.org/10.1088/1009-0630/14/8/01
[3]  Cheminat, B. and Andanson, P. (1985) La conduction dans la colonne d’un arc électrique contaminée par des vapeurs de cuivre. Journal of Physics D: Applied Physics, 18, L2183-L2192.
https://doi.org/10.1088/0022-3727/18/11/008
[4]  Abbaoui, M. and Cheminat, B. (1991) Determination of the Characteristics of an Electric Arc Plasma Contaminated by Vapors from Insolators. IEEE Transactions on Plasma Sciences, 19, 1-8.
https://doi.org/10.1109/27.62359
[5]  Koalaga, Z., Abbaoui, M. and Lefort, A. (1993) Calcul des propriétés thermodynamiques des plasmas d’isolants CxHyOzNt. Journal of Physics D: Applied Physics, 26, 393-403.
https://doi.org/10.1088/0022-3727/26/3/008
[6]  Choi, E.Y.K. (2015) Etude des arcs and leurs conséquences sur les métaux de contacts électriques de puissance pour des applications D C. Thèse de doctorat, Université de Rennes 1, Rennes.
[7]  Khaled, B. (2007) Utilisation des alliages monotectiques dans l’élaboration des contacts électriques. Thèse de doctorat, Université de Batna, Batna.
[8]  Jeannot, D., Pinard, J., Ramoni, P. and Jost, E.M. (1994) Physical and Chemical Properties of Metal Oxide Additions to AgSnO2 Contact Materials and Predictions of Electrical Performance. IEEE Transactions on Components and Packaging Technologies Part A, 17, 17-23.
https://doi.org/10.1109/95.296363
[9]  Abbaoui, M., André, P. and Augeard, A. (2018) Modèle enthalpique de Stephan pour l’étude du pied d’arc cathodique. Journal International de Technologie, de l’innovation de la physique, de l’énergieet de l’environnement, 4, 1-16.
http://dx.doi.org/10.18145/jitipee.v4i1.138
[10]  White, W.B., Johnson, S.M. and Dantzig, G.B. (1957) Chemical Equilibrium in Complex Mixtures. Journal of Chemical Physics, 28, 751-755.
http://dx.doi.org/10.1063/1.1744264
[11]  Chase, M.W. (1998) Nist-Janaf Thermochemical Tables. Fourth Edition, Part I, Al-Co. Journal Physical Chemical Reference Data, Monograph No. 9.
[12]  McBride, B.J., Zeche, M.J. and Gordon, S. (2002) NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species. Glenn Research Center, Cleveland.
[13]  Yaguibou, W.C., Kohio, N., Kagoné, A.K., Koalaga, Z. and Zougmoré, F. (2018) Influence des aérosols sur la composition à l’équilibre d’un plasma d’air. Journal International de Technologie, de l’innovation de la physique, de l’énergieet de l’environnement, 4, 5-19.
http://dx.doi.org/10.18145/jitipee.v4i1.167
[14]  André, P. (1996) Composition and Thermodynamic Properties of Ablated Vapours of PMMA, PA6-6, PETP, POM and PE. Journal of Physics D: Applied Physics, 29, 1963-1972.
https://doi.org/10.1088/0022-3727/29/7/033
[15]  André, P., Ondet, J., Pellet, R. and Lefort, A. (1997) The Calculation of Monatomic Spectral Lines’ Intensities and Composition in Plasma Out of Thermal Equilibrium; Evaluation of Thermal Disequilibrium in ICP Torches. Journal of Physics D: Applied Physics, 30, 2043-2055.
https://doi.org/10.1088/0022-3727/30/14/012
[16]  André, P. and Koalaga, Z. (2010) Composition of a Thermal Plasma Formed from PTFE with Copper in Non-Oxidant Atmosphere. Part I: Definition of a Test with the SF6. High Temperature Material Processes, 14, 279.
https://doi.org/10.1615/HighTempMatProc.v14.i3.70
https://hal.archives-ouvertes.fr/hal-00537752
[17]  André, P., Courty, M.A., Kagoné, A.K., Koalaga, Z., Kohio, N. and Zougmoré, F. (2016) Calcul de la composition chimique dans un plasma issu de mélanges de PTFE, d’air, de cuivre and de vapeur d’eau dans le cadre d’appareillages de coupure électrique à air. Journal International de Technologie, de l’innovation de la physique, de l’énergieet de l’environnement, 2, 3-8.
http://dx.doi.org/10.18145/jitipee.v2i1.128.g70
[18]  Kohio, N., Kagoné, A.K., Koalaga, Z. and Zougmoré, F. (2014) Composition of Air-Water Vapor Mixtures at Low Temperatures. International Journal of Advanced Research in Science, Engineering and Technology, 1, 240-246.
[19]  André, P. and Lalléchère, S. (2021) Calcul de la permittivité dans un plasma d’air hors de l’équilibre chimique and thermique: Effet sur la propagation des ondes électromagnétiques à différentes altitudes. Journal International de Technologie, de l’innovation de la physique, de l’énergieet de l’environnement, 1, 1-27.
https://doi.org/10.52497/jitipee.v7i1.286
[20]  Cayet, S. and Dudeck, M. (1996) Equilibre chimique dans des mélanges gazeux en déséquilibre thermique. Journal de Physique III, EDP Sciences, 6, 403-420.
https://doi.org/10.1051/jp3:1996130
[21]  Rochette, D., Buissière, W. and André, P. (2004) Composition, Enthalpy and Vaporisation Temperature Calculation of Ag-SiO2 Plasmas with Air in the Temperature Range from 1000 to 6000 K and for Pressure Included between 1 and 50 Bar. Plasma Chemistry and Plasma Processing, 24, 475-492.
https://doi.org/10.1007/s11090-004-2280-2
[22]  Kohio, N., Kagoné, A.K., Yaguibou, W.C, Koalaga, Z. and Zougmoré, F. (2020) Influence of Metallic Copper Vapors on the Chemical Composition of a Mixture of Air and Water Vapor Thermal Plasmas in the Temperature Range 1000 K to 20000 K. American Journal of Nano Research and Applications, 8, 50-57.
http://www.sciencepublishinggroup.com/j/nano

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133