全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Finite Element Structural Analysis of Buried Pipelines

DOI: 10.4236/mme.2022.122002, PP. 27-44

Keywords: Duct, Finite Element, Buried Pipeline, Material Creep, Thermal Conditions, Soil Springs

Full-Text   Cite this paper   Add to My Lib

Abstract:

This document uses previous results (which we call the first stage), for the development of a computer model based on finite elements under the FEAP programmer, to carry out a structural analysis of a pipeline. For this purpose, we used environmental variables that we believe influence the failure of buried pipelines such as the internal pressure of fluid, the type of support used, the temperature at which the pipelines work, the type of soil and the stiffness of the soil acting on it. Once the model was finalized, analyses were made with each of the variables separately and combined to observe the behavior of the pipeline, finding the most unfavorable case that indicates the main causes that led to its failure.

References

[1]  Casanova-del-Angel, F. and Córdova-Castillo, A. (2018) Metallography of an Underground Oil Pipeline. Open Journal of Metal, 8, 35-54.
https://doi.org/10.4236/ojmetal.2018.83003
[2]  Leyva Trujillo, M. and Salazar Arguello, S.I. (2017) Emisiones, fugas y derrames en el transporte de hidrocarburos por ductos. Tesis conjunta para obtener el título de ingeniero petrolero. Ciudad Universitaria, Ciudad de México..
[3]  Mahmood, D.N. and Abdulrazzaq, O.A. (2020) Stress Analysis of Buried Pipeline Using Finite Element Method. Journal of University of Babylon for Engineering Sciences, 28, 846-850.
[4]  Lee, H. (2010) Finite Element Analysis of a Buried Pipeline. School of Mechanical, Aerospace and Civil Engineering. Master’s Thesis, University of Manchester, Manchester.
[5]  Hernández, A.H. (1991) Análisis de falla por fractura en tuberías de conducción de petróleo. Ingeniería e Investigación, 25-36.
https://doi.org/10.15446/ing.investig.n23.20677
[6]  Nair, P. and Naik, S. (2017) Stress Analysis of Buried Pipelines. International Research Journal of Engineering and Technology, 4, 11-24.
[7]  Sharp, K.D., Anderson Loren, R., Moser, A.P. and Bishop Ronald, R. (1985) Finite Element Analysis Applied to the Response of Buried FRP Pipe under Various Installation Conditions. Transportation Research Record, 1008, 497-508.
[8]  Griffith, A.A. (1921) The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 221, 163-198.
https://doi.org/10.1098/rsta.1921.0006
[9]  Irwin, G.R. (1948) Fracture Dynamics, Fracturing of Metals. American Society for Metals, Cleveland, 147-166.
[10]  Orowan, E. (1949) Fracture Strength of Solids. Reports of Progress in Physics, 12, 185.
https://doi.org/10.1088/0034-4885/12/1/309
[11]  (2001) ASME B31.8, Gas Transmission and Distribution Piping Systems.
[12]  (2009) NRF-030-PEMEX-2009, Diseno, construcción, inspección y mantenimiento de ductos terrestres para transporte y recolección de hidrocarburos.
[13]  American Petroleum Institute (2004) API 5L, Specification for line pipe. Forty-fourth Edition.
[14]  (2001) ASCE, Guideline for the Design of Buried Steel Pipe.
[15]  Crespo Villalaz, C. (2004) Mecánica de suelos y cimentaciones. 5a edición, Editorial Limusa.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133