This document uses previous results (which we call the first stage), for
the development of a computer model based on finite elements under the FEAP
programmer, to carry out a structural analysis of a pipeline. For this purpose,
we used environmental variables that we believe influence the failure of buried
pipelines such asthe internal pressure of fluid, the type of support used, the temperature
at which the pipelines work, the type of soil and the stiffness of the soil
acting on it. Once the model was finalized, analyses were made with each of the
variables separately and combined to observe the behavior of the pipeline,
finding the most unfavorable case that indicates the main causes that led to
its failure.
References
[1]
Casanova-del-Angel, F. and Córdova-Castillo, A. (2018) Metallography of an Underground Oil Pipeline. Open Journal of Metal, 8, 35-54.
https://doi.org/10.4236/ojmetal.2018.83003
[2]
Leyva Trujillo, M. and Salazar Arguello, S.I. (2017) Emisiones, fugas y derrames en el transporte de hidrocarburos por ductos. Tesis conjunta para obtener el título de ingeniero petrolero. Ciudad Universitaria, Ciudad de México..
[3]
Mahmood, D.N. and Abdulrazzaq, O.A. (2020) Stress Analysis of Buried Pipeline Using Finite Element Method. Journal of University of Babylon for Engineering Sciences, 28, 846-850.
[4]
Lee, H. (2010) Finite Element Analysis of a Buried Pipeline. School of Mechanical, Aerospace and Civil Engineering. Master’s Thesis, University of Manchester, Manchester.
[5]
Hernández, A.H. (1991) Análisis de falla por fractura en tuberías de conducción de petróleo. Ingeniería e Investigación, 25-36.
https://doi.org/10.15446/ing.investig.n23.20677
[6]
Nair, P. and Naik, S. (2017) Stress Analysis of Buried Pipelines. International Research Journal of Engineering and Technology, 4, 11-24.
[7]
Sharp, K.D., Anderson Loren, R., Moser, A.P. and Bishop Ronald, R. (1985) Finite Element Analysis Applied to the Response of Buried FRP Pipe under Various Installation Conditions. Transportation Research Record, 1008, 497-508.
[8]
Griffith, A.A. (1921) The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 221, 163-198.
https://doi.org/10.1098/rsta.1921.0006
[9]
Irwin, G.R. (1948) Fracture Dynamics, Fracturing of Metals. American Society for Metals, Cleveland, 147-166.
[10]
Orowan, E. (1949) Fracture Strength of Solids. Reports of Progress in Physics, 12, 185. https://doi.org/10.1088/0034-4885/12/1/309
[11]
(2001) ASME B31.8, Gas Transmission and Distribution Piping Systems.
[12]
(2009) NRF-030-PEMEX-2009, Diseno, construcción, inspección y mantenimiento de ductos terrestres para transporte y recolección de hidrocarburos.
[13]
American Petroleum Institute (2004) API 5L, Specification for line pipe. Forty-fourth Edition.
[14]
(2001) ASCE, Guideline for the Design of Buried Steel Pipe.
[15]
Crespo Villalaz, C. (2004) Mecánica de suelos y cimentaciones. 5a edición, Editorial Limusa.