全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于NSGA-III算法的水资源优化配置研究
Study on Optimal Allocation of Water Resources Based on NSGA-III Algorithm

DOI: 10.12677/JWRR.2022.112017, PP. 159-168

Keywords: 多目标,优化配置,水资源,NSGA-III算法,栾川县
Multi-Objective
, Optimal Allocation, Water Resources, NSGA-III Algorithm, Luanchuan County

Full-Text   Cite this paper   Add to My Lib

Abstract:

为科学利用和配置有限水资源,提高区域水资源利用率,水资源优化配置成为当下研究重点之一。本文以经济、社会、生态为目标,建立了区域水资源多目标优化配置模型,以栾川县水资源配置为例,引入NSGA-III算法对其进行求解,并与NSGA-II算法进行比较。对比分析了应用NSGA-III和NSGA-II算法求解经济效益目标函数解集的分布图以及三个目标函数的计算结果,结果表明求解栾川县水资源配置方案时,NSGA-III算法的种群分布比NSGA-II更加均匀集中,且目标效益值优于NSGA-II。说明利用NSGA-III算法在求解区域水资源配置方案时对目标的选择能力更强,更适用于解决水资源优化配置问题,可以在其它区域推广应用。
In order to scientifically utilize and allocate limited water resources and improve the utilization rate of regional water resources, optimal allocation of water resources has become one of the current re-search focuses. A multi-objective optimal regional water resources allocation model with economic, social and ecological goals was established. Taking Luanchuan County water resources allocation as an example, NSGA-III algorithm was introduced to solve it and compared with NSGA-II algorithm. The distribution diagram of the solution set of the economic benefit objective function and the calculation results of the three objective functions solved by NSGA-III and NSGA-II algorithm were compared and analyzed. The results show that when solving the water resource allocation scheme of Luanchuan County, the population distribution of NSGA-III algorithm is more uniform and concentration than that of NSGA-II, and the target benefit value is better than NSGA-II. It indicates that NSGA-III algorithm has a stronger ability to select targets when solving regional water resource allocation schemes, and is more suitable for solving optimal water resource allocation problems, which can be popularized and applied in other region.

References

[1]  刘成良, 任传栋, 高佳. 多目标规划在邯郸水资源优化配置中的应用[J]. 水资源研究, 2008(3): 14-16. LIU Chengliang, REN Chuandong and GAO Jia. Application of multi-objective programming in optimal allocation of water resources in Handan. Journal of Water Resources Research, 2008(3): 14-16. (in Chinese)
[2]  史银军, 粟晓玲. 干旱区内陆河流域水资源使用权多目标优化分配——以甘肃省石羊河流域为例[J]. 干旱地区农业研究, 2010, 28(2): 136-140+149. SHI Yinjun, SU Xiaoling. Multi-objective optimization allocation of water resources use right in arid inland River Basin: A case study of Shiyang River Basin in Gansu Province. Agricultural Research in the Arid Areas, 2010, 28(2): 136-140+149. (in Chinese)
[3]  PARSINEJAD, M., YAZDI, A. B. and ARAGHINEJAD, S. Optimal water allocation in irrigation networks based on real time climatic data. Agricultural Water Management, 2013, 117(C): 1-8.
https://doi.org/10.1016/j.agwat.2012.10.025
[4]  刘姣, 刘东. 基于混合遗传算法的红兴隆分局水资源优化配置[J]. 水土保持研究, 2013, 20(6): 177-181. LIU Jiao, LIU Dong. Optimal allocation of water resources in Hongxinglong Branch based on hybrid genetic algorithm. Research of Soil and Water Conservation, 2013, 20(6): 177-181. (in Chinese)
[5]  侯景伟. 基于Pareto蚁群算法和3S技术的灌区水资源空间优化配置[J]. 中国农村水利水电, 2014(3): 166-168+171. HOU Jingwei. Spatial optimal allocation of water resources in irrigated area based on Pareto ant Colony Algorithm and 3S technology. China Rural Water Resources and Hydropower, 2014(3): 166-168+171. (in Chinese)
[6]  李琳, 吴鑫淼, 郄志红. 基于改进NSGA-Ⅱ算法的水资源优化配置研究[J]. 水电能源科学, 2015, 33(4): 34-37. LI Lin, WU Xinmiao and QIE Zhihong. Research on optimal allocation of water resources based on improved NSGA-II algorithm. Water and Power Energy Science, 2015, 33(4): 34-37. (in Chinese)
[7]  何国华, 解建仓, 汪妮, 等. 基于模拟退火遗传算法的水资源优化配置研究[J]. 西北农林科技大学学报(自然科学版), 2016, 44(6): 196-202. HE Guohua, XIE Jiancang, WANG Ni, et al. Research on optimal allocation of water resources based on simulated annealing Genetic Algorithm. Journal of Northwest A&F University (Natural Science Edition), 2016, 44(6): 196-202. (in Chinese)
[8]  李丹, 郭生练, 田晶, 等. 基于三步优化的多目标水资源配置研究及应用[J]. 水资源研究, 2018(5): 433-444. LI Dan, GUO Shenglian, TIAN Jing, et al. Research and application of multi-objective water resources allocation based on three-step optimization. Journal of Water Resources Research, 2018(5): 433-444. (in Chinese)
[9]  沙金霞. 改进的NSGA-II法在邢台市水资源优化配置中的应用[J]. 水电能源科学, 2018, 36(5): 21-25. SHA Jinxia. Application of improved NSGA-II method in optimal allocation of water resources in Xingtai City. Water and Power Energy Science, 2018, 36(5): 21-25. (in Chinese)
[10]  曾萌, 王丰, 张永鹏, 等. 基于鱼群算法的广东省水资源优化配置研究[J]. 西北大学学报(自然科学版), 2020, 50(5): 733-741. ZENG Meng, WANG Feng, ZHANG Yongpeng, et al. Research on optimal allocation of water resources in Guangdong Province based on fish swarm algorithm. Journal of Northwest University (Natural Science Edition), 2020, 50(5): 733-741. (in Chinese)
[11]  王慧, 高泽海, 孙超, 等. 基于NSGA-II的灌区水资源优化配置模型及应用[J]. 灌溉排水学报, 2021, 40(9): 118-124. WANG Hui, GAO Zehai, SUN Chao, et al. Model and application of optimal allocation of water resources in irrigated area based on NSGA-II. Journal of Irrigation and Drainage, 2021, 40(9): 118-124. (in Chinese)
[12]  艾永乐, 杜明珠, 潘智航, 等. 基于NSGA-III算法的含光伏发电的配电网无功优化[J/OL]. 控制工程, 1-7.
https://doi.org/10.14107/j.cnki.kzgc.20210185, 2021-11-22. AI Yongle, DU Mingzhu, PAN Zhihang, et al. Reactive power optimization of distribution network with photovoltaic power generation based on NSGA-III algorithm. Control Engineering, 1-7.
https://doi.org/10.14107/j.cnki.kzgc.20210185, 2021-11-22. (in Chinese)
[13]  黄少雄, 王璨, 孔庆竹, 等. 含短期预测的光伏配电网智能调压策略[J]. 热力发电, 2020, 49(7): 21-27. HUANG Shaoxiong, WANG Can, KONG Qingzhu, et al. Intelligent voltage regulation strategy of pv distribution network including short-term forecast. Thermal Power Generation, 2020, 49(7): 21-27. (in Chinese)
[14]  安友军, 陈晓慧. 近似支配的NSGA-III算法求解柔性作业车间调度问题[J]. 系统工程学报, 2021, 36(3): 416-432. AN Youjun, CHEN Xiaohui. Approximate dominated NSGA-III algorithm for flexible Job-shop scheduling problem. Journal of Systems Engineering, 2021, 36(3): 416-432. (in Chinese)
[15]  何小妹, 董绍华. 多目标多约束混合流水车间插单重调度问题研究[J]. 工程科学学报, 2019, 41(11): 1450-1457. HE Xiaomei, DONG Shaohua. Research on the rescheduling problem of multi-objective and multi-constraint hybrid flow shop. Journal of Engineering Science, 2019, 41(11): 1450-1457. (in Chinese)
[16]  DEB, K., JAIN, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving Problems with Box Constraints. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
https://doi.org/10.1109/TEVC.2013.2281535
[17]  王一杰. 基于多目标规划的泗县水资源优化配置研究[D]: [硕士学位论文]. 邯郸: 河北工程大学, 2020. WANG Yijie. Research on optimal allocation of water resources in Sixian County based on multi-objective programming. Master’s Thesis, Handan: Hebei University of Engineering, 2020. (in Chinese)
[18]  GU, Q., WANG, R. and XIE, H. Modified non-dominated sorting genetic algorithm III with fine final level selection. Applied Intelligence, 2021, 51(7): 4236-4269.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133