全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

医保欺诈行为的主动发现——基于熵权法引入指标权重的聚类分析算法
Proactive Detection of Health Insurance Fraud—Clustering Analysis Algorithm Based on Entropy Weighting Method Introducing Indicator Weights

DOI: 10.12677/AAM.2022.114168, PP. 1541-1548

Keywords: 指标权重,聚类分析,欺诈识别,信息熵,熵权法
Indicator Weights
, Cluster Analysis, Fraud Identification, Information Entropy, Entropy Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对一些现有的识别方法存在的问题进行改进,应用“基于熵权法引进指标权重的聚类分析算法”进行医保欺诈行为的识别。在完全舍弃主观赋权的情况下,精确地识别出发生欺诈行为的个案。首先对无意义的数据进行降维,并结合医疗保险欺诈的现实案例,综合筛选出五个指标,而后引入信息熵的概念,并基于熵权法确定指标权重;为了避免各个指标的权重给定中存在的主观性,本文通过对信息熵的刻画来体现某一个指标所拥有的信息量期望,最后将得到的权重应用于“改进的欧式距离”,通过对不同指标的“距离”进行赋权,得到一种全新的“距离”用于聚类分析。并按照账单号合并多条拿药记录,以账单号为索引,通过层次聚类分析算法构建聚类树。本文认定:医保欺诈行为是完全地呈孤立点分布的。通过改变聚类数,得到不同聚类数下的孤立点个数,最终结合相关案例,选定聚类数为4,由此求得并给出疑似发生医保欺诈的账单记录43个。
This paper addresses the problems of some existing identification methods and applies a “clustering analysis algorithm based on entropic weighting to introduce indicator weights”. In order to avoid subjectivity in the weighting of each indicator, this paper uses the information entropy to characterise the expected information content of a particular indicator. In order to avoid the subjectivity in the weighting of each indicator, this paper reflects the information expectation of a certain indicator through the portrayal of information entropy, and finally applies the obtained weights to the “improved Euclidean distance”, and obtains a new “distance” by assigning weights to the “distances” of different indicators for clustering analysis. The paper also merges multiple medication taking records by billing number and uses the billing number as the index to construct a clustering tree by a hierarchical cluster analysis algorithm. This paper concludes that: health insurance fraud is completely distributed in isolated points. By varying the number of clusters, the number of isolated points under different clusters was obtained, and finally the number of clusters was selected to be 4 in conjunction with relevant cases, which resulted in 43 billing records suspected to have been fraudulent.

References

[1]  孙梦秋. 医保诈骗犯罪研究[D]: [硕士学位论文]. 扬州: 扬州大学, 2020.
https://doi.org/10.27441/d.cnki.gyzdu.2020.000657
[2]  狄萱. 基于孤立森林和随机森林的医保欺诈识别系统[D]: [硕士学位论文]. 南京: 南京邮电大学, 2021.
https://doi.org/10.27251/d.cnki.gnjdc.2021.000436
[3]  刘蓥. 医保欺诈数据异常深度学习算法分析研究[D]: [硕士学位论文]. 成都: 成都理工大学, 2020.
https://doi.org/10.26986/d.cnki.gcdlc.2020.001013
[4]  李金灿, 徐珂琳, 於州, 魏艳, 仇春涓, 秦国友, 汪荣明, 徐望红. 大数据技术在医保反欺诈中的应用[J]. 中国医疗保险, 2021(1): 48-52.
[5]  陈富秋, 吕亚兰. 基于医保大数据的异常行为检测[J]. 技术与市场, 2021, 28(2): 18-20.
[6]  武优西, 侯丹丹, 李建满, 米少华.属性权重聚类算法的研究[J]. 小型微型计算机系统, 2012, 33(3): 651-654.
[7]  2015年深圳杯数学建模夏令营A题及其附件[Z/OL]. http://www.mcm.edu.cn/html_cn/node/41a9e7cecbbf3df4094aca089c10e2fd.html, 2015-04-14.
[8]  杜倩, 刘鸿宇, 胡琦. 社会医疗保险基金欺诈行为的扎根理论研究——基于58个医保欺诈刑事案件分析[J]. 法制与经济, 2020(8): 70-71+75.
[9]  林源, 谌立平, 宋曙光. 城乡居民医疗保险欺诈损失实证研究[J]. 怀化学院学报, 2020(4): 50-54.
[10]  姚强, 杨菲, 郭冰清. 基本医疗保险“欺诈骗保”现象的影响因素及路径研究——基于我国31个省级案例的清晰集定性比较分析[J]. 中国卫生政策研究, 2020, 13(11): 24-31.
[11]  Shannon, C.E. (1956) The Zero-Error Capacity of a Noisy Channel. IEEE Transactions on Information Theory, 12, 8-19.
https://doi.org/10.1109/TIT.1956.1056798

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133