|
基于机器学习的多特征融合高分辨率遥感影像土地利用分类研究
|
Abstract:
为了提高土地利用分类精度,本文以高分二号遥感影像作为基础实验数据,融合影像光谱信息、归一化植被指数(NDVI)和纹理信息形成多特征融合影像,分别采用神经网络分类方法和支持向量机分类方法对高分辨率遥感影像进行土地利用分类研究,并对两种分类方法结果进行分类精度对比。研究结果发现:1) 多特征融合影像分类精度优于单独使用研究区遥感影像波段光谱信息进行分类取得的精度,很大程度上提高了土地利用分类准确度。2) 与神经网络分类方法相比,基于多特征融合的支持向量机分类法分类斑块碎化程度较小,图斑完整性较好,地物错分漏分现象较少,并且从总体精度和Kappa系数来看,支持向量机分类法优于神经网络分类,且基于多特征融合影像的SVM分类总体精度达到了93.98%,Kappa系数为0.8981。因此基于多特征融合影像的SVM分类能够有效提高土地利用分类精度,可为土地利用监测和土地整治提供有效的数据和技术支持。
In order to improve the accuracy of land use classification, this paper uses Gaofen-2 remote sensing images as the basic experimental data, and fuses image spectral information, normalized vegetation index (NDVI) and texture information to form multi-feature fusion images, using neural network classification methods respectively. The land use classification of high-resolution remote sensing images is studied with the support vector machine classification method, and the classification ac-curacy of the results of the two classification methods is compared. The research results show that: 1) The classification accuracy of multi-feature fusion images is better than that obtained by using the spectral information of remote sensing image bands in the study area alone, which greatly im-proves the accuracy of land use classification. 2) Compared with the neural network classification method, the support vector machine classification method based on multi-feature fusion has less fragmentation degree, better patch integrity, less misclassification and omission of ground objects, and from the overall. In terms of accuracy and Kappa coefficient, support vector machine classification is better than neural network classification, and the overall accuracy of SVM classification based on multi-feature fusion images reaches 93.98%, and the Kappa coefficient is 0.8981. Therefore, SVM classification based on multi-feature fusion images can effectively improve the accuracy of land use classification, and can provide effective data and technical support for land use monitoring and land remediation.
[1] | Townshend, J., Masek, J., Huang, C.Q., et al. (2012) Global Characterization and Monitoring of Forest Cover Using Landsat Data: Opportunities and Challenges. International Journal of Digital Earth, 5, 373-397.
https://doi.org/10.1080/17538947.2012.713190 |
[2] | 彭立, 杨武年, 黄瑾. 川西高原多时相干涉雷达土地覆盖分类研究[J]. 西南大学学报(自然科学版), 2016, 38(5): 125-132. |
[3] | 赵静, 王崇倡, 王家海, 陈艳玲. 基于云理论的遥感影像分类方法分析[J]. 测绘工程, 2014, 23(12): 21-24+30. |
[4] | 杜国明, 匡文慧, 孟凡浩, 等. 巴西土地利用/覆盖变化时空格局及驱动因素[J]. 地理科学进展, 2015, 34(1): 73-82. |
[5] | Chen, Y., Su, W., Li, J., et al. (2009) Hierarchical Object Oriented Classification Using Very High Resolution Imagery and LIDAR Data over Urban Areas. Advances in Space Research, 43, 1101-1110.
https://doi.org/10.1016/j.asr.2008.11.008 |
[6] | 蔡博文, 王树根, 王磊, 邵振峰. 基于深度学习模型的城市高分辨率遥感影像不透水面提取[J]. 地球信息科学学报, 2019, 21(9): 1420-1429. |
[7] | 刘晓双, 龚直文, 吴见. 基于多特征的高光谱遥感土地利用信息提取[J]. 南京林业大学学报(自然科学版), 2018, 42(4): 141-147. |
[8] | 陈磊士, 赵俊三, 李易, 朱祺夫, 许可. 基于机器学习的多源遥感影像融合土地利用分类研究[J]. 西南师范大学学报(自然科学版), 2018, 43(10): 103-111. |
[9] | 业巧林, 许等平, 张冬. 基于深度学习特征和支持向量机的遥感图像分类[J]. 林业工程学报, 2019, 4(2): 119-125. |
[10] | Sun, Z., Guo, H., Li, X., et al. (2011) Estimating Urban Impervious Surfaces from Landsat-5 TM Imagery Using Multilayer Perceptron Neural Network and Support Vector Machine. Journal of Applied Remote Sensing, 5, 913-917.
https://doi.org/10.1117/1.3539767 |
[11] | 张波, 胡亚东, 洪津. 基于多特征融合的层次支持向量机遥感图像云检测[J]. 大气与环境光学学报, 2021, 16(1): 58-66. |
[12] | 李梦颖, 邢艳秋, 刘美爽, 王铮, 姚松涛, 曾旭婧, 谢杰. 基于支持向量机的Landsat-8影像森林类型识别研究[J]. 中南林业科技大学学报, 2017, 37(4): 52-58. |
[13] | 周晓宇, 陈富龙, 姜爱辉. 基于SVM雷达卧龙大熊猫栖息地森林成图[J]. 国土资源遥感, 2017, 29(3): 85-91. |
[14] | 杜培军, 夏俊士, 薛朝辉, 谭琨, 苏红军, 鲍蕊. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2): 236-256. |