|
四次间接PH曲线的几何特征
|
Abstract:
四次间接PH曲线根据其导数的表示可以分为两类,本文介绍了两类四次间接PH曲线的几何特征。主要方法是用Bernstein形式的复多项式表示平面Bézier曲线并且通过引入辅助控制顶点将几何特征转化为非线性方程求解问题,使得四次平面曲线成为间接PH曲线的条件可以用控制多边形上的几何约束来描述。
Quadric indirect PH curves can be divided into two types according to the expression of their derivatives. This paper introduces the geometric characteristics of two kinds of quadric indirect PH curves. The plane Bézier curves are represented by using the Bernstein form of complex polynomials. The geometric features are transformed into nonlinear equations by introducing auxiliary control vertices. Then the conditions of quartic plane curves to be indirect PH curves can be described by the geometric constraints on the control polygon.
[1] | 陈远宁, 陈琳. 一种构造三次PH曲线的几何方法[J]. 大学数学, 2009, 25(4): 127-130. |
[2] | 刘莹莹, 王旭辉. 平面三次PH过渡曲线的构造[J]. 合肥工业大学学报(自然科学版), 2016, 39(9): 1288-1291+1296. |
[3] | 方林聪, 阳诚砖, 邸文钰, 刘芳. 插值给定数据点的四次PH曲线构造[J]. 中国图象图形学报, 2020, 25(7): 1473-1480. |
[4] | Wang, G. and Fang, L. (2009) On Control Polygons of Quartic Pythagorean-Hodograph Curves. Computer Aided Geometric Design, 26, 1006-1015. https://doi.org/10.1016/j.cagd.2009.08.003 |
[5] | 雍俊海, 郑文. 一类五次PH曲线Hermite插值的几何方法[J]. 计算机辅助设计与图形学学报, 2005(5): 990-995. |
[6] | 彭丰富, 刘惠. 一类G~1连续的空间五次PH曲线[J]. 桂林电子科技大学学报, 2016, 36(6): 504-507. |
[7] | 王慧, 朱春钢, 李彩云. 六次PH曲线G~2 Hermite插值[J]. 图学学报, 2016, 37(2): 155-165. |
[8] | 李毓君, 方林聪. 七次PH曲线G~2[C~1]Hermite插值方法[J]. 中国科学: 信息科学, 2019, 49(6): 698-707. |
[9] | Zheng, Z., Wang, G. and Yang, P. (2016) On Control Polygons of Pythagorean Hodograph Septic Curves. Journal of Computational and Applied Mathematics, 296, 212-227. https://doi.org/10.1016/j.cam.2015.09.006 |
[10] | Jüttler, B. (2001) Hermite Interpolation by Pythagorean Hodograph Curves of Degree Seven. Mathematics of Computation, 70, 1089-1111. https://doi.org/10.1090/S0025-5718-00-01288-6 |
[11] | Li, Y., Fang, L. and Cao, J. (2019) Identification of Two Classes of Planar Septic Pythagorean Hodograph Curves. Journal of Computational and Applied Mathematics, 348, 383-400. https://doi.org/10.1016/j.cam.2018.09.002 |
[12] | 吴伟栋, 杨勋年. 一类代数-三角函数表示的空间PH曲线及其应用[J]. 图学学报, 2018, 39(2): 295-303. |
[13] | 寿华好, 江瑜, 缪永伟. 基于三次PH曲线误差可控代数曲线等距线逼近算法[J]. 图学学报, 2012, 33(2): 30-33. |
[14] | 郑志浩, 汪国昭. OR插值曲线构造及Bézier曲线逼近[J]. 计算机辅助设计与图形学学报, 2006, 18(3): 366-371. |
[15] | Lu, X., Zheng, J., Cai, Y. and Zhao, G. (2016) Geometric Characteristics of a Class of Cubic Curves with Rational Offsets. Computer-Aided Design, 70, 36-45. https://doi.org/10.1016/j.cad.2015.07.006 |
[16] | Hormann, K. and Zheng, J. (2020) Algebraic and Geometric Characterizations of a Class of Planar Quartic Curves with Rational Offsets. Computer Aided Geometric Design, 79, 1-15. https://doi.org/10.1016/j.cagd.2020.101873 |
[17] | 段小娟, 汪国昭. 一类4次OR曲线的几何判别法[J]. 计算机辅助几何和图形学学报, 2018, 30(3): 500-513. |
[18] | 李毓君, 方林聪. 五次间接PH曲线的几何特征[J]. 中国科学: 信息科学, 2021, 51(5): 808-821. |