全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于图神经网络和XGBoost的抗乳腺癌候选药物预测模型研究
Study on Anti-Breast Cancer Drug Candidate Forecast Model Based on Graph Neural Network and XGBoost

DOI: 10.12677/AAM.2022.114172, PP. 1578-1587

Keywords: 抗乳腺癌药物,遗传算法,随机森林,图神经网络,XGBoost
Anti-Breast Cancer Drugs
, Genetic Algorithm, Random Forest, Graph Neural Network, XGBoost

Full-Text   Cite this paper   Add to My Lib

Abstract:

药物研发过程中,通过筛选影响显著的化合物继而合成抗癌药物无疑能够保证抗癌药物研发的高效性和针对性。本文针对收集到的与乳腺癌相关的ER??活性的1974种化合物,首先利用基于遗传算法的随机森林模型筛选出前20个对生物活性最具有显著影响的分子描述符,其次以此选择分子描述符变量构建定量预测模型得到预测结果,随后构建化合物的分类预测模型。结果表明该模型预测具有很强的实践意义,采用的预测策略是有效的,可为抗乳腺癌药物的研发提供借鉴。
In the process of drug development, screening compounds with significant influence and then synthesizing anticancer drugs can undoubtedly ensure the high efficiency and pertinence of anticancer drug development. Aiming at the collected 1974 compounds with ERα activity related to breast cancer, the random forest model based on genetic algorithm was used to screen out the top 20 molecular descriptors with the most significant impact on biological activity, and then the molecular descriptor variables were selected based on this. A quantitative prediction model is constructed to obtain the prediction result, and then a classification prediction model of the compound is constructed. The results show that the model prediction has strong practical significance, and the prediction strategy adopted is effective, which can provide reference for the research and development of anti-breast cancer drugs.

References

[1]  Freddie, B., Jacques, F., Isabelle, S.A., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[2]  孙博, 蒙艺灵, 温涛, 等. 多肽修饰的金纳米颗粒对小鼠三阴性乳腺癌细胞的靶向光热效应研究[J]. 北京生物医学工程, 2021, 40(5): 441-446.
[3]  牛东梅. 乳腺癌影像诊断中多层螺旋CT与钼靶摄影的应用对比研究[J]. 系统医学, 2021, 6(1): 122-124.
[4]  顾耀文, 张博文, 郑思, 等. 基于图注意力网络的药物ADMET分类预测模型构建方法[J]. 数据分析与知识发现, 2021, 5(8): 76-85.
[5]  Lei, T., Sun, H., Kang, Y., et al. (2017) ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning-Approaches. Molecular Pharmaceutics, 14, 3935-3953.
https://doi.org/10.1021/acs.molpharmaceut.7b00631
[6]  Wenzel, J., Matter, H. and Schmidt, F. (2019) Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets. Journal of Chemical Information and Modeling, 59, 1253-1268.
https://doi.org/10.1021/acs.jcim.8b00785
[7]  陈禹, 毛莺池. 基于随机森林和遗传算法的Ceph参数自动调优[J]. 计算机应用, 2020, 40(2): 347-351.
[8]  Wu, Z., Ramsundar, B. and Feinberg, E.N. (2018) MoleculeNet: A Benchmark for Molecular Machine Learning. Chemical Science, 9, 513-530.
https://doi.org/10.1039/C7SC02664A
[9]  白茹, 滕奇志, 杨晓敏, 等. 基于SVM和GA的药物与人血清白蛋白结合的预测[J]. 计算机工程与应用, 2009, 45(12): 226-228, 248.
https://doi.org/10.3778/j.issn.1002-8331.2009.12.072
[10]  Mirza, Q.A.K., Awan, I. and Younas, M. (2018) CloudIntell: An Intelligent Malware Detection System. Future Generations Computer Systems: FGCS, 86, 1042-1053.
https://doi.org/10.1016/j.future.2017.07.016
[11]  Qiao, K., Zeng, L., Chen, J., et al. (2018) Wire Segmentation for Printed Circuit Board Using Deep Convolutional Neural Network and Graph Cut Model. IET Image Processing, 12, 793-800.
https://doi.org/10.1049/iet-ipr.2017.1208
[12]  Wang, Y., Li, Z., Gao, J., et al. (2020) Deep Neural Network-Based Wi-Fi/Pedestrian Dead Reckoning Indoor Positioning System Using Adaptive Robust Factor Graph Model. IET Radar, Sonar & Navigation, 14, 36-47.
https://doi.org/10.1049/iet-rsn.2019.0260

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133