|
基于深度学习的长链非编码RNA与微小RNA相互作用预测的研究进展
|
Abstract:
长链非编码RNA (lncRNA)与微小RNA (miRNA)都是非编码RNA,越来越多的证据表明两者之间的相互作用与癌症的发展、基因调控、细胞代谢等生物学过程高度相关。与此同时,随着RNA序列技术的快速发展人们发现了许多新的lncRNA和miRNA,这可能有助于探索新的基因调控模式,人们对于lncRNA-miRNA相互作用的研究兴趣也随之越来越大。为此,我们回顾了目前lncRNA-miRNA相互作用关系预测的研究进展,我们针对部分研究人员的最新研究成果着重调查了他们使用的计算方法和数据库。调查结果显示深度学习已经成为lncRNA-miRNA相互作用关系预测的首选策略,这可能是由于深度学习基础设施和专业知识的快速增长。虽然这些方法中有许多都有明显的局限性,但深度学习有望在未来lncRNA-miRNA相互作用关系预测的领域取得更加充分的应用。
Long non-coding RNA (LncRNA) and microRNA (miRNA) are both noncoding RNA. More and more evidence shows that the interaction between them is highly related to biological processes such as cancer development, gene regulation and cell metabolism. At the same time, with the rapid devel-opment of RNA sequence measuring technology, many new lncRNAs and miRNAs have been found, which may help to explore new gene regulation modes, and people are more and more interested in the research of lncRNA-miRNA interaction. Therefore, we reviewed the current research progress in the prediction of lncRNA-miRNA interaction. We focused on the calculation methods and databases used by some researchers according to their latest research results. The results show that deep learning has become the preferred strategy for the prediction of lncRNA-miRNA interaction, which may be due to the rapid growth of deep learning infrastructure and expertise. Although many of these methods have obvious limitations, deep learning is expected to become the basis of modern lncRNAX-miRNA interaction prediction algorithms.
[1] | Yang, S., Wang, Y., Zhang, S., Hu, X., Ma, Q. and Tian, Y. (2020) NCResNet: Noncoding Ribonucleic Acid Predic-tionBased on a Deep Resident Network of Ribonucleic Acid Sequences. Frontiers in Genetics, 11, Article No. 90.
https://doi.org/10.3389/fgene.2020.00090 |
[2] | Huang, J.Z., Chen, M., Chen, D., Gao, X.C., Zhu, S., Huang, H., Hu, M., Zhu, H. and Yan, G.R. (2017) A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Molecular Cell, 68, 171-184.e6.
https://doi.org/10.1016/j.molcel.2017.09.015 |
[3] | Chakravarty, D., Sboner, A., Nair, S.S., Giannopoulou, E., Li, R., Hennig, S., Mosquera, J.M., Pauwels, J., Park, K., Kossai, M., et al. (2014) The Oestrogen Receptor Alpha-Regulated lncRNA NEAT1 Is a Critical Modulator of Prostate Cancer. Nature Communications, 5, Article No. 5383. https://doi.org/10.1038/ncomms6383 |
[4] | Bhan, A. and Mandal, S.S. (2015) LncRNA HOTAIR: A Master Regu-lator of Chromatin Dynamics and Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1856, 151-164. https://doi.org/10.1016/j.bbcan.2015.07.001 |
[5] | Sun, M., Nie, F., Wang, Y., Zhang, Z., Hou, J., He, D., Xie, M., Xu, L., De, W., Wang, Z., et al. (2016) LncRNAHOXA11-AS Promotes Proliferation and Invasion of Gastric Cancer by Scaffolding the Chromatin Modification Factors PRC2, LSD1, and DNMT1. Cancer Research, 76, 6299-6310. https://doi.org/10.1158/0008-5472.CAN-16-0356 |
[6] | Xue, X., Yang, Y.A., Zhang, A., Fong, K.W., Kim, J., Song, B., Li, S., Zhao, J.C. and Yu, J. (2016) LncRNA HOTAIRenhances ER Signaling and Confers Tamoxifen Re-sistance in Breast Cancer. Oncogene, 35, 2746-2755.
https://doi.org/10.1038/onc.2015.340 |
[7] | Cao, S., Liu, W., Li, F., Zhao, W. and Qin, C. (2014) Decreased Ex-pression of lncRNA GAS5 Predicts a Poor Prognosis Incervical Cancer. International Journal of Clinical and Experi-mental Pathology, 7, 6776-6783. |
[8] | Cai, Y., Yu, X., Hu, S. and Yu, J. (2009) A Brief Review on the Mechanisms of miRNA Regulation. Genomics, Proteomics & Bioinformatics, 7, 147-154. https://doi.org/10.1016/S1672-0229(08)60044-3 |
[9] | Peng, W.X., Koirala, P. and Mo, Y.Y. (2017) LncRNA-Mediated Regulation of Cell Signalingin Cancer. Oncogene, 36, 5661-5667. https://doi.org/10.1038/onc.2017.184 |
[10] | Frankish, A., Diekhans, M., Ferreira, A.M., Johnson, R., Jungreis, I., Loveland, J., Mudge, J.M., Sisu, C., Wright, J., Armstrong, J., et al. (2019) GENCODE Reference Annotation for the Human and Mouse Genomes. Nucleic Acids Research, 47, D766-D773. https://doi.org/10.1093/nar/gky955 |
[11] | Miao, Y.R., Liu, W., Zhang, Q. and Guo, A.Y. (2018) LncRNASNP2: An Updated Database of Functional SNPs Andmutations in Human and Mouse lncRNAs. Nucleic Acids Research, 46, D276-D280.
https://doi.org/10.1093/nar/gkx1004 |
[12] | Kozomara, A., Birgaoanu, M. and Griffiths-Jones, S. (2019) miRBase: From MicroRNA Sequences to Function. Nucleic Acids Research., 47, D155-D162. https://doi.org/10.1093/nar/gky1141 |
[13] | Huang, Y.A., Huang, Z.A., You, Z.H., Zhu, Z., Huang, W.-Z., Guo, J.-X., et al. (2019) Predicting lncRNA-miRNA Interaction via Graph Convolution Auto-Encoder. Frontiers in Genetics, 10, Article No. 758.
https://doi.org/10.3389/fgene.2019.00758 |
[14] | Kang, Q., Meng, J., Cui, J., Luan, Y. and Chen, M. (2020) Pmli-Pred: A Method Based on Hybrid Model and Fuzzy Decision for Plant miRNA-lncRNA Interaction Prediction. Bioin-formatics, 36, 2986-2992.
https://doi.org/10.1093/bioinformatics/btaa074 |
[15] | Yang, S., Wang, Y., Lin, Y., Shao, D., He, K. and Huang, L. (2020) LncMirNet: Predicting LncRNA-miRNA Interaction Based on Deep Learning of Ribonucleic Acid Sequences. Molecules, 25, Article No. 4372.
https://doi.org/10.3390/molecules25194372 |
[16] | Tong, X. and Liu, S. (2019) CPPred: Coding Potential Prediction Based on the Global Description of RNA Sequence. Nucleic Acids Research, 47, e43. https://doi.org/10.1093/nar/gkz087 |
[17] | Liu, B., Fang, L., Wang, S., Wang, X., Li, H. and Chou, K.C. (2015) Iden-tification of MicroRNA Precursor with Thedegenerate K-Tuple or Kmer Strategy. Journal of Theoretical Biology, 385, 153-159.
https://doi.org/10.1016/j.jtbi.2015.08.025 |
[18] | Lau, J.H. and Baldwin, T. (2016) An Empirical Evaluation of doc2vec with Practical Insights into Document EmbeddingGeneration. Proceedings of the 1st Workshop on Representa-tion Learning for NLP, Berlin, 11 August 2016, 78-86.
https://doi.org/10.18653/v1/W16-1609 |
[19] | Ahmed, N., Rossi, R.A., Lee, J., Willke, T., Zhou, R., Kong, X. and Eldardiry, H. (2020) Role-Based Graph Embeddings. IEEE Transactions on Knowledge and Data Engineering, 34, 2401-2415.
https://doi.org/10.1109/TKDE.2020.3006475 |
[20] | Yu, X., Jiang, L., Jin, S., Zeng, X. and Liu, X. (2022) preMLI: A Pre-Trained Method to Uncover MicroRNA-lncRNA Potential Interactions. Briefings in Bioinformatics, 23, Article No. bbab470. https://doi.org/10.1093/bib/bbab470 |