All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

基于MVR技术的压缩机气体温度控制系统设计
Design of Compressor Gas Temperature Control System Based on MVR Technology

DOI: 10.12677/DSC.2022.112008, PP. 65-76

Keywords: MVR,压缩机,气体温度控制,模糊自适应PID控制,PLC
MVR
, Compressor, Gas Temperature Control, Fuzzy Adaptive PID Control, PLC

Full-Text   Cite this paper   Add to My Lib

Abstract:

MVR技术以其突出的节能特性,广泛应用于化工、食品、环保等行业。在MVR系统中,压缩机气体温度直接影响工业原液的处理品质,为此设计了一种基于MVR技术的压缩机气体温度控制系统。系统采用西门子S7-1500PLC为核心控制器、威纶通触摸屏为上位机、易福门温度传感器和宝德数字式比例控制阀。考虑到气体温度在控制过程中存在惯性大,非线性以及时滞等特点,在传统PID的基础上,提出了基于模糊PID动态原理的控制算法,通过模糊控制方法实现PID参数在线整定,从而使得PID控制器具备了根据系统变化进行自适应调整的能力。实验结果表明,系统运行稳定,压缩机出气温度稳定在设定值(120 ± 2)℃,控制方案设计合理,满足要求。
MVR technology has received extensive use in chemical, food, environmental protection and other industries for its excellent energy-saving characteristics. In MVR system, the treatment quality of industrial waste liquid will be directly affected by the compressor gas temperature. A compressor gas temperature control system based on MVR technology was designed, using Siemens S7-1500PLC as the core controller, Weinview touch screen as the upper computer, ifm temperature sensor and Burkert digital proportional control valve. Considering the characteristics of large inertia, nonlinearity and time delay in the control process of gas temperature, a control algorithm based on the dynamic principle of the fuzzy PID was proposed. The PID parameters were adjusted online through the fuzzy control method, so that the PID controller had the ability of adaptive adjustment according to the changes of the system. The experimental results showed that the outlet temperature of the compressor was stable at the set value of (120 ± 2)?C. The designed control scheme is reasonable and meets the requirements.

References

[1]  竺东杰. 基于材料提取的MVR浓缩工艺及其装备的研究[D]: [硕士学位论文]. 武汉: 武汉工程大学, 2014.
[2]  刘旭明, 吴敏, 杭阿芳. 基于PID的液体恒定控制系统[J]. 中国制造业信息化, 2012, 41(23): 72-75.
[3]  杨云鹏, 于有生, 路向阳. 基于模糊PID的纺织厂空调温度控制系统设计[J]. 毛纺科技,2021, 49(2): 79-82.
[4]  韦宏利, 周建波, 王晴悦, 魏秀. 基于模糊PID的温度控制系统设计[J]. 国外电子测量技术, 2021, 40(9): 111-116.
[5]  王宁, 虎恩典, 王志刚. 基于S7-300 PLC与触摸屏的烧结炉温度控制系统设计[J]. 制造业自动化, 2014, 36(21): 115-117+126.
[6]  常国峰, 崔贤. 不同环境因素对空气绝热指数测量误差的影响[J]. 实验室科学, 2021, 24(3): 31-35.
[7]  陈悦. 一种用于MVR蒸发系统的蒸汽压缩机的温度控制控制方法[P]. 中国专利, 107246372A. 2017-10-13.
[8]  郭霆, 沈九兵, 田雅芬, 邢子文. 螺杆蒸汽压缩机工作过程喷水冷却特性研究[J]. 机械工程学报, 2016, 52(24): 147-154.
[9]  洪槐斌, 刘雯华, 张进杰. 往复式压缩机气量调节工况下的内模解耦PID控制策略研究[J]. 流体机械, 2021, 49(10): 29-35.
[10]  胡亚南, 李明辉, 霍蛟飞, 丰会萍. 基于S7-1200PLC的注射机料筒温度控制系统[J]. 塑料科技, 2019, 47(12): 93-98.
[11]  杨云鹏, 于有生, 路向阳. 基于模糊PID的纺织厂空调温度控制系统设计[J]. 毛纺科技, 2021, 49(2): 79-82.
[12]  谭印, 李川. 基于模糊神经网络PID的卷材纠偏控制[J]. 包装工程, 2017, 38(19): 190-193.
[13]  王丽君. 基于模糊PID的切纸机控制系统研究[J]. 造纸科学与技术, 2020, 39(1): 40-44.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413