|
多层功能梯度立井井壁有限元仿真
|
Abstract:
本文采用层合模型的思想将功能梯度立井井壁划分为多层同轴圆筒,并借助ABAQUS有限元软件进行数值模拟,分析了各层间弹性模量差值的改变对于多层功能梯度井壁力学特性的影响,由此得出当圆筒内部应力分布最均匀时的最适层间弹性模量差值,并探究了功能梯度立井井壁在不同分层数情况下最合适层间弹性模量差值的变化情况及产生的原因。结果表明:不同层数下的功能梯度井壁均对应一个最合适的层间弹性模量差值,使得功能梯度立井井壁内部Mises应力达到相对均匀,即有效缓解了井壁内侧的应力集中现象,同时井壁内侧的最大应力达到最小,并且最合适层间弹性模量差值随着层数增加而减小,此研究对于确定功能梯度井壁在实际工程应用中的划分层数和各层的混凝土标号的选取具有重要意义。
In this paper, the shaft wall of functionally gradient vertical shaft is divided into multi-layer coaxial cylinders by using the idea of laminating model, and numerical simulation is carried out with the finite element software ABAQUS to analyze the influence of the change of elastic modulus difference between layers on the mechanical properties of multi-layer functionally gradient shaft wall. According to this, we obtain the optimal difference of elastic modulus between layers when the stress distribution inside the cylinder is most uniform, and explore the variation of the optimal difference of elastic modulus between layers when the number of layers of functionally gradient shaft wall is different and the causes of the difference are discussed. The result shows that when the different layers of functionally graded sidewall are corresponding to the most appropriate elastic modulus difference between layers, the function gradient vertical shaft sidewall internal Mises stress reaches relatively uniform, which is effective in relieving the stress concentration phenomenon, the inside of the wall at the same time to minimize the maximum stress of the inside of the wall and the most appropriate elastic modulus difference between layers decreases as the number of layers increases. This study is of great significance to determine the number of dividing layers and the selection of concrete label of each layer of functionally graded shaft wall in practical engineering application.
[1] | 姚直书, 程桦, 荣传新. 深冻结井筒内层钢板高强钢筋混凝土复合井壁试验研究[J]. 岩石力学与工程学报, 2008, 27(1): 158-165. |
[2] | Zhang, N., Lu, A., Li, C.C., et al. (2017) Support Performance of Functionally Graded Concrete Lining. Construction and Building Materials, 147, 35-47. https://doi.org/10.1016/j.conbuildmat.2017.04.161 |
[3] | Koizumi, M. (1997) FGM Activities in Japan. Composites Part B: Engineering, 28, 1-4.
https://doi.org/10.1016/S1359-8368(96)00016-9 |
[4] | Shi, Z., Zhang, T. and Xiang, H. (2007) Exact Solutions of Heterogeneous Elastic Hollow Cylinders. Composite Structures, 79, 140-147. https://doi.org/10.1016/j.compstruct.2005.11.058 |
[5] | Xiang, H.J., Shi, Z.F. and Zhang, T.T. (2006) Elastic Analyses of Heterogeneous Hollow Cylinders. Mechanics Research Communications, 33, 681-691. https://doi.org/10.1016/j.mechrescom.2006.01.005 |
[6] | Yang, Y.Y. (2000) Time-Dependent Stress Analysis in Functionally Graded Materials. International Journal of Solids and Structures, 37, 7593-7608. https://doi.org/10.1016/S0020-7683(99)00310-8 |
[7] | Horgan, C.O. and Chan, A.M. (1999) The Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linearly Elastic Materials. Jounal of Elasticity, 55, 43-59. https://doi.org/10.1023/A:1007625401963 |
[8] | 张宁, 张雨辰, 吕爱钟, 陈旭光. 一种功能梯度混凝土复合井壁及制作方法[P]. 中国专利, CN111287754A. 2020-06-16. |
[9] | 张宁. 功能梯度混凝土立井井壁承载性能研究[D]: [博士学位论文]. 北京: 华北电力大学, 2012. |
[10] | 许冲. 功能梯度立井井壁力学性能及其设计理论研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2021. |
[11] | 李德春, 许冲, 崔振东, 张通通, 杨杰, 宋刚, 杨金宏, 陈金明, 徐香庆, 张照伟. 一种多层功能梯度立井井壁结构及施工工艺[P]. 中国专利, CN112031777A. 2020-12-04. |
[12] | 李德春, 张通通, 崔振东, 等. 弹性模量环向梯度变化的功能梯度井壁结构及施工方法[P]. 中国专利, CN112360467A. 2021-02-12. |
[13] | 吕爱钟, 张路青. 用于提高立井井壁弹性极限承载力的梯度功能材料反演[C]//中国岩石力学与工程学会. 第十届全国岩石力学与工程学术大会论文集: 2008年卷. 北京: 中国电力出版社, 2008: 138-144. |