|
我国省域二氧化硫排放量的影响因素分析——基于空间杜宾模型的研究
|
Abstract:
减少或控制二氧化硫排放量是我国节能减排的主要目标。基于2004~2018年我国省域相关变量的面板数据,首先采用全局Moran’s I指数和局部Moran散点图研究了我国省域二氧化硫排放量的空间相关性;其次,通过拓展STIRPAT模型建立空间杜宾模型研究了二氧化硫排放量的影响因素;进一步,考察了二氧化硫排放量影响因素的直接效应和间接效应。研究结果表明:1) 我国二氧化硫排放存在显著的空间正相关性;2) 本区域人口数和相邻地区的研发强度的增加有利于改善二氧化硫的排放;本地区及相邻地区对环境投资占比的增加却大大加剧二氧化硫排放污染;3) 二氧化硫排放量主要受本地区能源消费的影响,而其他地区能源消费对本地区二氧化硫排放量的影响有限。据此,本文提出了相应的政策建议。
Reducing or controlling sulfur dioxide emissions is the main goal of energy conservation and emission reduction in China. Based on the panel data of provincial correlated variables in China from 2004 to 2018, the spatial correlation of sulfur dioxide emissions in China was studied by using global Moran’s I index and local Moran scatter plot. Secondly, the influence factors of sulfur dioxide emissions were studied by expanding the spatial Dubin model. Furthermore, the direct and indirect effects of sulfur dioxide emission factors were investigated. The results show that: 1) There is a significant positive spatial correlation between sulfur dioxide emissions in China; 2) The increase of population in the region and the research and development intensity in adjacent areas is beneficial to the improvement of sulfur dioxide emissions; however, the increase of the proportion of environmental investment in this region and its neighboring regions greatly increased the sulfur dioxide emission pollution; 3) Sulfur dioxide emissions are mainly affected by energy consumption in the region, while energy consumption in other regions has a limited impact on sulfur dioxide emissions in the region. Accordingly, this paper puts forward corresponding policy suggestions.
[1] | 裴孝东, 吴静, 薛俊波. 基于LMDI和层次聚类的中国省级工业SO2排放影响因素分析[J]. 生态经济, 2021, 37(12): 183-189. |
[2] | 肖挺, 刘华. 产业结构调整与节能减排问题的实证研究[J]. 经济学家, 2014(9): 58-68. |
[3] | Kim, K.Y. and Lee, J.S. (2015) An Analysis of the Impact of China’s Pollution Reduction Policy on Sulfur Dioxide Emissions. Journal of Climate Change Research, 6, 367-377. https://doi.org/10.15531/ksccr.2015.6.4.367 |
[4] | Wang, Y., Han, R. and Kubota, J. (2016) Is There an Environmental Kuznets Curve for SO2 Emissions? A Semi-Parametric Panel Data Analysis for China. Renewable and Sustainable Energy Reviews, 54, 1182-1188.
https://doi.org/10.1016/j.rser.2015.10.143 |
[5] | 周侃, 樊杰. 中国环境污染源的区域差异及其社会经济影响因素——基于339个地级行政单元截面数据的实证分析[J]. 地理学报, 2016, 71(11): 1911-1925. |
[6] | 惠炜, 赵国庆. 环境规制与污染避难所效应——基于中国省际数据的面板门槛回归分析[J]. 经济理论与经济管理, 2017, 36(2): 23-33. |
[7] | 涂正革, 周涛, 谌仁俊, 甘天琦. 环境规制改革与经济高质量发展——基于工业排污收费标准调整的证据[J]. 经济与管理研究, 2019, 40(12): 77-95. |
[8] | 姜英兵, 崔广慧. 环保产业政策对环境污染影响效应研究——基于重污染企业环保投资的视角[J]. 南方经济, 2019, 38(9): 51-68. |
[9] | 卢洪友, 刘啟明, 徐欣欣, 杨娜娜. 环境保护税能实现“减污”和“增长”么?——基于中国排污费征收标准变迁视角[J]. 中国人口·资源与环境, 2019, 29(6): 130-137. |
[10] | Qi, Z.M., Song, J.N., Yang, W., Duan, H.Y. and Liu, X.Y. (2020) Revealing Contributions to Sulfur Dioxide Emissions in China: From the Dimensions of Final Demand, Driving Effect and Supply Chain. Resources, Conservation & Recycling, 160, Article ID: 104864. https://doi.org/10.1016/j.resconrec.2020.104864 |
[11] | Wang, Y.Z., et al. (2021) Cleaner Production vs End-of-Pipe Treatment: Evidence from Industrial SO2 Emissions Abatement in China. Journal of Environmental Management, 277, Article ID: 111429.
https://doi.org/10.1016/j.jenvman.2020.111429 |
[12] | 陈硕, 陈婷. 空气质量与公共健康: 以火电厂二氧化硫排放为例[J]. 经济研究, 2014, 49(8): 158-169+183. |
[13] | Qian, Y., et al. (2018) Environmental Responsibility for Sulfur Dioxide Emissions and Associated Biodiversity Loss across Chinese Provinces. Environmental Pollution, 245, 898-908. https://doi.org/10.1016/j.envpol.2018.11.043 |
[14] | Wu, K. (2019) Relationship between Economic Growth and SO2 Emissions-Based on the PSTR Model. HOLISTICA: Journal of Business and Public Administration, 10, 137-156. https://doi.org/10.2478/hjbpa-2019-0022 |
[15] | 曹静, 郭哲. 中国二氧化硫排污权交易试点的政策效应——基于PSM-DID方法的政策效应评估[J]. 重庆社会科学, 2019(7): 24-37. |
[16] | 林伯强, 邹楚沅. 发展阶段变迁与中国环境政策选择[J]. 中国社会科学, 2014(5): 81-95+205-206. |
[17] | Dietz, T. and Rosa, E.A. (1994) Rethinking the Environmental Impacts of Population, Affluence and Technology. Human Ecology Review, 1, 277-300. |
[18] | York, R., Rosa, E.A. and Dietz, T. (2003) STIRPAT, IPAT and ImPACT: Analytic Tools for Unpacking the Driving Forces of Environmental Impacts. Ecological Economics, 46, 351-365.
https://doi.org/10.1016/S0921-8009(03)00188-5 |
[19] | Li, K., Fang, L. and He, L. (2020) The Impact of Energy Price on CO2 Emissions in China: A Spatial Econometric Analysis. Science of the Total Environment, 706, Article ID: 135942. https://doi.org/10.1016/j.scitotenv.2019.135942 |
[20] | Anselin, L. (1988) Spatial Econometrics: Methods and Models. Springer, Berlin.
https://doi.org/10.1007/978-94-015-7799-1 |
[21] | Elhorst, J.P. (2010) Dynamic Panels with Endogenous Interaction Effects When T Is Small. Regional Science and Urban Economics, 40, 272-282. https://doi.org/10.1016/j.regsciurbeco.2010.03.003 |
[22] | Lesage, J. and Pace, R.K. (2008) Introduction to Spatial Econometrics. Revue d’Economie Industrielle, 123, 19-44.
https://doi.org/10.4000/rei.3887 |