全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

比较分析深度学习方法在沪深300指数价格预测的研究
Comparative Analysis of Deep Learning Methods in the Price Prediction of the Shanghai and Shenzhen 300 Index

DOI: 10.12677/HJDM.2022.122018, PP. 173-181

Keywords: 沪深300指数价格,深度学习方法,评价性指标
CSI300
, Deep Learning Methods, Evaluative Index

Full-Text   Cite this paper   Add to My Lib

Abstract:

沪深300指数价格变动反映市场股票价格变动趋势,是投资者最关注的问题之一。如何构建合适的模型拟合价格时间序列变成了解决这一问题的关键之处。本文探究了不同深度学习方法对于价格的预测情况,分析得到几点探索性建议。实证分析中,数据选择沪深300指数2016年3月至2021年3月的价格数据,包括每日开盘价、最高价、最低价、收盘价四个数据特征共1218条数据,并对不同模型预测结果通过评价性指标进行对比分析。结果表明,对于数据信息利用更充分的模型,预测效果更好。
The price change of the CSI300 price Index reflects the trend of market stock price changes, which is one of the most concerned issues for investors. How to build a suitable model to fit the price time series has become the key to solving this problem. This article explores the price predictions of different deep learning methods, and acquires several exploratory suggestions. In the empirical, this paper takes the CSI300 price index as the research object and the data from March 2016 to March 2021 is selected, including daily opening price, highest price, lowest price and closing price, with a total of 1218 data. Comparing and analyzing the prediction results of different models through evaluative indicators show that Models with more adequate use of data and information provide better prediction results.

References

[1]  马超群, 杨竟澜, 任奕帅. 基于H-LSTM模型的沪深300指数价格预测[J]. 计量经济学报, 2021, 1(2): 437.
[2]  Kong, A. and Zhu, H. (2018) Predicting Trend of High Frequency CSI 300 Index Using Adaptive Input Se-lection and Machine Learning Techniques. Journal of Systems Science and Information, 6, 120-133.
https://doi.org/10.21078/JSSI-2018-120-14
[3]  Ariyo, A.A., Adewumi, A.O. and Ayo, C.K. (2014) Stock Price Prediction Using the ARIMA Model. 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, Cambridge, 26-28 March 2014, 106-112.
https://doi.org/10.1109/UKSim.2014.67
[4]  Weiss, A.A. (1984) ARMA Models with ARCH Errors. Journal of Time Series Analysis, 5, 129-143.
https://doi.org/10.1111/j.1467-9892.1984.tb00382.x
[5]  Kramer, M.A. (1991) Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. AIChE Journal, 37, 233-243.
https://doi.org/10.1002/aic.690370209
[6]  Baldi, P. and Brunak, S. (2001) Bioinformatics: The Machine Learning Approach. MIT Press, Cambridge.
[7]  Zaremba, W., Sutskever, I. and Vinyals, O. (2014) Recurrent Neural Network Regularization. arXiv preprint arXiv:1409.2329.
[8]  Graves, A. (2012) Long Short-Term Memory. Springer, Berlin, 37-45.
https://doi.org/10.1007/978-3-642-24797-2_4
[9]  Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735
[10]  Kalchbrenner, N., Grefenstette, E. and Blunsom, P. (2014) A Convolutional Neural Network for Modelling Sentences. arXiv preprint arXiv:1404.2188.
https://doi.org/10.3115/v1/P14-1062
[11]  Vaswani, A., Shazeer, N., Parmar, N., et al. (2017) Attention Is All You Need. Advances in Neural Information Processing System, 30, 5998-6008.
[12]  Li, Y., Chen, K.Z. and Wang, J. (2011) Development and Validation of a Clinical Prediction Model to Estimate the Probability of Malignancy in Solitary Pulmo-nary Nodules in Chinese People. Clinical Lung Cancer, 12, 313-319.
https://doi.org/10.1016/j.cllc.2011.06.005
[13]  Beal, M.J., Ghahramani, Z. and Rasmussen, C.E. (2002) The Infi-nite Hidden Markov Model. Advances in Neural Information Processing Systems, 1, 577-584.
[14]  Salinas, D., Flunkert, V., Gasthaus, J., et al. (2020) DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks. International Journal of Forecasting, 36, 1181-1191.
https://doi.org/10.1016/j.ijforecast.2019.07.001
[15]  Kavianpour, P., Kavianpour, M., Jahani, E., et al. (2021) A CNN-BiLSTM Model with Attention Mechanism for Earthquake Prediction. arXiv preprint arXiv:2112.13444.
[16]  Eesa, A.S. and Arabo, W.K. (2017) A Normalization Methods for Backpropaga-tion: A Comparative Study. Science Journal of University of Zakho, 5, 319-323.
https://doi.org/10.25271/2017.5.4.381
[17]  Willmott, C.J. (1982) Some Comments on the Evaluation of Model Performance. Bulletin of the American Meteorological Society, 63, 1309-1313.
https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
[18]  Du, L. (2020) How Much Deep Learning Does Neural Style Transfer Really Need? An Ablation Study. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, 1-5 March 2020, 3150-3159.
https://doi.org/10.1109/WACV45572.2020.9093537

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133