全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hippo信号通路与人类免疫调控的研究进展
Research Progress of Hippo Signaling Pathway and Human Immune Regulation

DOI: 10.12677/HJBM.2022.122017, PP. 132-141

Keywords: Hippo信号通路,YAP/TAZ,免疫,肿瘤
Hippo Signaling Pathway
, YAP/TAZ, Immunity, Tumor

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hippo信号是与器官大小调控、组织再生和肿瘤发展密切相关的信号通路。最近,越来越多的研究表明Hippo信号通路还在人类免疫调控中发挥重要作用。在本文中,我们主要总结了Hippo信号通路的组成及其调控机制,以及Hippo信号网络中的各种组分在人类免疫系统中的作用,重点介绍了Hippo通路在先天免疫以及抗肿瘤免疫方面的重要调节功能。本文为Hippo通路相关领域研究,以及免疫相关致病机制和治疗策略提供了新的思路。
The hippo signaling pathway is closely related to organ size regulation, tissue regeneration and tumor development. Recently, more and more studies have shown that Hippo signaling pathway also plays an important role in human immune regulation. In this paper, we mainly summarize the composition and regulatory mechanism of Hippo signaling pathway, and the roles of various components of Hippo signaling network in human immune system, focusing on the important regulatory functions of Hippo pathway in innate immunity and anti-tumor immunity. This paper provides a new idea for the study of Hippo pathway and immune-related pathogenesis and treatment strategies.

References

[1]  Justice, R.W., Zilian, O., Woods, D.F., Noll, M. and Bryant, P.J. (1995) The Drosophila Tumor Suppressor Gene Warts Encodes a Homolog of Human Myotonic Dystrophy Kinase and Is Required for the Control of Cell Shape and Proliferation. Genes & Development, 9, 534-546.
https://doi.org/10.1101/gad.9.5.534
[2]  Xu, T., Wang, W., Zhang, S., Stewart, R.A. and Yu, W. (1995) Identifying Tumor Suppressors in Genetic Mosaics: The Drosophila Lats Gene Encodes a Putative Protein Kinase. Development, 121, 1053-1063.
https://doi.org/10.1242/dev.121.4.1053
[3]  Kango-Singh, M., Nolo, R., Tao, C., Verstreken, P., Hiesinger, P.R., Bellen, H.J., et al. (2002) Shar-Pei Mediates Cell Proliferation Arrest during Imaginal Disc Growth in Drosophila. Development, 129, 5719-5730.
https://doi.org/10.1242/dev.00168
[4]  Tapon, N., Harvey, K.F., Bell, D.W., Wahrer, D.C., Schiripo, T.A., Haber, D., et al. (2002) Salvador Promotes Both Cell Cycle Exit and Apoptosis in Drosophila and Is Mutated in Human Cancer Cell Lines. Cell, 110, 467-478.
[5]  Wu, S., Huang, J., Dong, J. and Pan, D. (2003) Hippo Encodes a Ste-20 Family Protein Kinase that Restricts Cell Proliferation and Promotes Apoptosis in Conjunction with Salvador and Warts. Cell, 114, 445-456.
[6]  Udan, R.S., Kango-Singh, M., Nolo, R., Tao, C. and Halder, G. (2003) Hippo Promotes Proliferation Arrest and Apoptosis in the Salvador/Warts Pathway. Nature Cell Biology, 5, 914-920.
https://doi.org/10.1038/ncb1050
[7]  Wei, X., Shimizu, T. and Lai, Z.C. (2007) Mob as Tumor Suppressor Is Activated by Hippo Kinase for Growth Inhibition in Drosophila. The EMBO Journal, 26, 1772-1781.
https://doi.org/10.1038/sj.emboj.7601630
[8]  Huang, J., Wu, S., Barrera, J., Matthews, K. and Pan, D. (2005) The Hippo Signaling Pathway Coordinately Regulates Cell Proliferation and Apoptosis by Inactivating Yorkie, the Drosophila Homolog of YAP. Cell, 122, 421-434.
[9]  Oh, H. and Irvine, K.D. (2008) In Vivo Regulation of Yorkie Phosphorylation and Localization. Development, 135, 1081-1088.
https://doi.org/10.1242/dev.015255
[10]  Chan, E.H., Nousiainen, M., Chalamalasetty, R.B., Sch?fer, A., Nigg, E.A. and Silljé, H.H. (2005) The Ste20-Like Kinase Mst2 Activates the Human Large Tumor Suppressor Kinase Lats1. Oncogene, 24, 2076-2086.
https://doi.org/10.1038/sj.onc.1208445
[11]  Hao, Y., Chun, A., Cheung, K., Rashidi, B. and Yang, X. (2008) Tumor Suppressor LATS1 Is a Negative Regulator of Oncogene YAP. Journal of Biological Chemistry, 283, 5496-5509.
[12]  Lei, Q.Y., Zhang, H., Zhao, B., Zha, Z.Y., Bai, F., Pei, X.H., et al. (2008) TAZ Promotes Cell Proliferation and Epithelial-Mesenchymal Transition and Is Inhibited by the Hippo Pathway. Molecular and Cellular Biology, 28, 2426-2436.
https://doi.org/10.1128/MCB.01874-07
[13]  Zheng, Y. and Pan, D. (2019) The Hippo Signaling Pathway in Development and Disease. Development Cell, 50, 264-282.
[14]  Dey, A. and Varelas, X. (2020) Targeting the Hippo Pathway in Cancer, Fibrosis, Wound Healing and Regenerative Medicine. Nature Reviews Drug Discovery, 19, 480-494.
https://doi.org/10.1038/s41573-020-0070-z
[15]  Nehme, N.T., Schmid, J.P., Debeurme, F., André-Schmutz, I., Lim, A., Nitschke, P., et al. (2012) MST1 Mutations in Autosomal Recessive Primary Immunodeficiency Characterized by Defective Naive T-Cell Survival. Blood, 119, 3458-3468.
https://doi.org/10.1182/blood-2011-09-378364
[16]  Meng, Z., Moroishi, T. and Guan, K.L. (2016) Mechanisms of Hippo Pathway Regulation. Genes & Development, 30, 1-17.
https://doi.org/10.1101/gad.274027.115
[17]  Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., et al. (2007) Inactivation of YAP Oncoprotein by the Hippo Pathway Is Involved in Cell Contact Inhibition and Tissue Growth Control. Genes & Development, 21, 2747-2761.
https://doi.org/10.1101/gad.1602907
[18]  Zhao, B., Li, L., Tumaneng, K., Wang, C.Y. and Guan, K.L. (2010) A Coordinated Phosphorylation by Lats and CK1 Regulates YAP Stability through SCF(Beta-TRCP). Genes & Development, 24, 72-85.
https://doi.org/10.1101/gad.1843810
[19]  Liu, C.Y., Zha, Z.Y., Zhou, X., Zhang, H., Huang, W., Zhao, D., et al. (2010) The Hippo Tumor Pathway Promotes TAZ Degradation by Phosphorylating a Phosphodegron and Recruiting the SCF{Beta}-TrCP E3 Ligase. Journal of Biological Chemistry, 285, 37159-37169.
[20]  Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., et al. (2008) TEAD Mediates YAP-Dependent Gene Induction and Growth Control. Genes & Development, 22, 1962-1971.
https://doi.org/10.1101/gad.1664408
[21]  Kanai, F., Marignani, P.A., Sarbassova, D., Yagi, R., Hall, R.A., Donowitz, M., et al. (2000) TAZ: A Novel Transcriptional Co-Activator Regulated by Interactions with 14-3-3 and PDZ Domain Proteins. The EMBO Journal, 19, 6778-6791.
https://doi.org/10.1093/emboj/19.24.6778
[22]  Mahoney Jr., W.M., Hong, J.H, Yaffe, M.B. and Farrance, I.K. (2005) The Transcriptional Co-Activator TAZ Interacts Differentially with Transcriptional Enhancer Factor-1 (TEF-1) Family Members. Biochemical Journal, 388, 217-225.
https://doi.org/10.1042/BJ20041434
[23]  Huh, H.D., Kim, D.H. and Jeong, H.S. (2019) Regulation of TEAD Transcription Factors in Cancer Biology. Cells, 8, Article No. 600.
https://doi.org/10.3390/cells8060600
[24]  Meng, Z., Moroishi, T., Mottier-Pavie, V., Plouffe, S.W., Hansen, C.G., Hong, A.W., et al. (2015) MAP4K Family Kinases Act in Parallel to MST1/2 to Activate LATS1/2 in the Hippo Pathway. Nature Communication, 6, Article No. 8357.
https://doi.org/10.1038/ncomms9357
[25]  Hergovich, A. (2016) The Roles of NDR Protein Kinases in Hippo Signalling. Genes, 7, Article No. 21.
https://doi.org/10.3390/genes7050021
[26]  Lallemand, D., Curto, M., Saotome, I., Giovannini, M. and McClatchey, A.I. (2003) NF2 Deficiency Promotes Tumorigenesis and Metastasis by Destabilizing Adherens Junctions. Genes & Development, 17, 1090-1100.
https://doi.org/10.1101/gad.1054603
[27]  Bitra, A., Sistla, S., Mariam, J., Malvi, H. and Anand, R. (2017) Rassf Proteins as Modulators of Mst1 Kinase Activity. Science Report, 7, Article No. 45020.
https://doi.org/10.1038/srep45020
[28]  Chau, T.L., Gioia, R., Gatot, J.S., Patrascu, F., Carpentier, I., Chapelle, J.P., et al. (2008) Are the IKKs and IKK-Related Kinases TBK1 and IKK-Epsilon Similarly Activated? Trends in Biochemical Sciences, 33, 171-180.
[29]  Hiscott, J. (2007) Convergence of the NF-κB and IRF Pathways in the Regulation of the Innate Antiviral Response. Cytokine & Growth Factor Reviews, 18, 483-490.
https://doi.org/10.1016/j.cytogfr.2007.06.002
[30]  Guo, X., Zhao, Y., Yan, H., Yang, Y., Shen, S., Dai, X., et al. (2017) Single Tumor-Initiating Cells Evade Immune Clearance by Recruiting Type II Macrophages. Genes & Development, 31, 247-259.
https://doi.org/10.1101/gad.294348.116
[31]  Zhang, Y.L., Li, Q., Yang, X.M., Fang, F., Li, J., Wang, Y.H., et al. (2018) SPON2 Promotes M1-Like Macrophage Recruitment and Inhibits Hepatocellular Carcinoma Metastasis by Distinct Integrin-Rho GTPase-Hippo Pathways. Cancer Research, 78, 2305-2317.
https://doi.org/10.1158/0008-5472.CAN-17-2867
[32]  Kim, W., Khan, S.K., Liu, Y., Xu, R., Park, O., He, Y., et al. (2018) Hepatic Hippo Signaling Inhibits Protumoural Microenvironment to Suppress Hepatocellular Carcinoma. Gut, 67, 1692-1703.
https://doi.org/10.1136/gutjnl-2017-314061
[33]  Du, X., Wen, J., Wang, Y., Karmaus, P.W.F., Khatamian, A., Tan, H., et al. (2018) Hippo/Mst Signalling Couples Metabolic State and Immune Function of CD8α+ Dendritic Cells. Nature, 558, 141-145.
https://doi.org/10.1038/s41586-018-0177-0
[34]  Du, X., Shi, H., Li, J., Dong, Y., Liang, J., Ye, J., et al. (2014) Mst1/Mst2 Regulate Development and Function of Regulatory T Cells through Modulation of Foxo1/Foxo3 Stability in Autoimmune Disease. Journal of Immunology, 192, 1525-1535.
https://doi.org/10.4049/jimmunol.1301060
[35]  Li, C., Bi, Y., Li, Y., Yang, H., Yu, Q., Wang, J., et al. (2017) Dendritic Cell MST1 Inhibits Th17 Differentiation. Nature Communication, 8, Article No. 14275.
https://doi.org/10.1038/ncomms14275
[36]  Zhang, Q., Meng, F., Chen, S., Plouffe, S.W., Wu, S., Liu, S., et al. (2017) Hippo Signalling Governs Cytosolic Nucleic Acid Sensing through YAP/TAZ-Mediated TBK1 Blockade. Nature Cell Biology, 19, 362-374.
https://doi.org/10.1038/ncb3496
[37]  Meng, F., Zhou, R., Wu, S., Zhang, Q., Jin, Q., Zhou, Y., et al. (2016) Mst1 Shuts off Cytosolic Antiviral Defense through IRF3 Phosphorylation. Genes & Development, 30, 1086-1100.
https://doi.org/10.1101/gad.277533.116
[38]  Yuan, L., Mao, Y., Luo, W., Wu, W., Xu, H., Wang, X.L., et al. (2017) Palmitic Acid Dysregulates the Hippo-YAP Pathway and Inhibits Angiogenesis by Inducing Mitochondrial Damage and Activating the Cytosolic DNA Sensor cGAS-STING-IRF3 Signaling Mechanism. Journal of Biological Chemistry, 292, 15002-150015.
[39]  Jiao, S., Guan, J., Chen, M., Wang, W., Li, C., Wang, Y., et al. (2018) Targeting IRF3 as a YAP Agonist Therapy against Gastric Cancer. Journal of Experimental Medicine, 215, 699-718.
https://doi.org/10.1084/jem.20171116
[40]  Wang, S., Xie, F., Chu, F., Zhang, Z., Yang, B., Dai, T., et al. (2017) YAP Antagonizes Innate Antiviral Immunity and Is Targeted for Lysosomal Degradation through IKK?-Mediated Phosphorylation. Nature Immunology, 18, 733-743.
https://doi.org/10.1038/ni.3744
[41]  Fang, C., Li, J., Qi, S., Lei, Y., Zeng, Y., Yu, P., et al. (2019) An Alternatively Transcribed TAZ Variant Negatively Regulates JAK-STAT Signaling. EMBO Reports, 20, e47227.
https://doi.org/10.15252/embr.201847227
[42]  Liu, Z., Wu, C., Pan, Y., Liu, H., Wang, X., Yang, Y., et al. (2019) NDR2 Promotes the Antiviral Immune Response via Facilitating TRIM25-Mediated RIG-I Activation in Macrophages. Science Advances, 5, eaav0163.
https://doi.org/10.1126/sciadv.aav0163
[43]  Moroishi, T., Hayashi, T., Pan, W.W., Fujita, Y., Holt, M.V., Qin, J., et al. (2016) The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity. Cell, 167, 1525-1539.E17.
[44]  Hagenbeek, T.J., Webster, J.D. and Kljavin, N.M. (2018) The Hippo Pathway Effector TAZ Induces TEAD-Dependent Liver Inflammation and Tumors. Science Signaling, 11, No. 547.
https://doi.org/10.1126/scisignal.aaj1757
[45]  Wang, G., Lu, X., Dey, P., Deng, P., Wu, C.C., Jiang, S., et al. (2016) Targeting YAP-Dependent MDSC Infiltration Impairs Tumor Progression. Cancer Discovery, 6, 80-95.
https://doi.org/10.1158/2159-8290.CD-15-0224
[46]  Murakami, S., Shahbazian, D., Surana, R., Zhang, W., Chen, H., Graham, G.T., et al. (2017) Yes-Associated Protein Mediates Immune Reprogramming in Pancreatic Ductal Adenocarcinoma. Oncogene, 36, 1232-1244.
https://doi.org/10.1038/onc.2016.288
[47]  Sarkar, S., Bristow, C.A., Dey, P., Rai, K., Perets, R., Ramirez-Cardenas, A., et al. (2017) PRKCI Promotes Immune Suppression in Ovarian Cancer. Genes & Development, 31, 1109-1121.
https://doi.org/10.1101/gad.296640.117
[48]  Liu, B., Zheng, Y., Yin, F., Yu, J., Silverman, N. and Pan, D. (2016) Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila. Cell, 164, 406-419.
[49]  Lee, P.C. and Machner, M.P. (2018) The Legionella Effector Kinase LegK7 Hijacks the Host Hippo Pathway to Promote Infection. Cell Host Microbe, 24, 429-438.E6.
[50]  Geng, J., Sun, X., Wang, P., Zhang, S., Wang, X., Wu, H., et al. (2015) Kinases Mst1 and Mst2 Positively Regulate Phagocytic Induction of Reactive Oxygen Species and Bactericidal Activity. Nature Immunology, 16, 1142-1152.
https://doi.org/10.1038/ni.3268
[51]  Boro, M., Singh, V. and Balaji, K.N. (2016) Mycobacterium tuberculosis-Triggered Hippo Pathway Orchestrates CXCL1/2 Expression to Modulate Host Immune Responses. Science Report, 6, Article No. 37695.
https://doi.org/10.1038/srep37695
[52]  Cao, W., Manicassamy, S., Tang, H., Kasturi, S.P., Pirani, A., Murthy, N., et al. (2008) Toll-Like Receptor-Mediated Induction of Type I Interferon in Plasmacytoid Dendritic Cells Requires the Rapamycin-Sensitive PI(3)K-mTOR-p70S6K Pathway. Nature Immunology, 9, 1157-1164.
https://doi.org/10.1038/ni.1645
[53]  Tumaneng, K., Schlegelmilch, K., Russell, R.C., Yimlamai, D., Basnet, H., Mahadevan, N., et al. (2012) YAP Mediates Crosstalk between the Hippo and PI(3)K-TOR Pathways by Suppressing PTEN via miR-29. Nature Cell Biology, 14, 1322-1329.
https://doi.org/10.1038/ncb2615
[54]  Gan, W., Dai, X., Dai, X. and Xie, J. (2020) LATS Suppresses mTORC1 Activity to Directly Coordinate Hippo and mTORC1 Pathways in Growth Control. Nature Cell Biology, 22, 246-256.
https://doi.org/10.1038/s41556-020-0463-6
[55]  Pai, S.G., Carneiro, B.A., Mota, J.M., Costa, R., Leite, C.A., Barroso-Sousa, R., et al. (2017) Wnt/Beta-Catenin Pathway: Modulating Anticancer Immune Response. Journal of Hematology & Oncology, 10, Article No. 101.
https://doi.org/10.1186/s13045-017-0471-6
[56]  Varelas, X., Miller, B.W., Sopko, R., Song, S., Gregorieff, A., Fellouse, F.A., et al. (2010) The Hippo Pathway Regulates Wnt/Beta-Catenin Signaling. Development Cell, 18, 579-591.
[57]  Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A. and Nishida, E. (2012) A Molecular Mechanism that Links Hippo Signalling to the Inhibition of Wnt/β-Catenin Signalling. The EMBO Journal, 31, 1109-1122.
https://doi.org/10.1038/emboj.2011.487
[58]  Sharma, S., Tenoever, B.R., Grandvaux, N., Zhou, G.P., Lin, R. and Hiscott, J. (2003) Triggering the Interferon Antiviral Response through an IKK-Related Pathway. Science, 300, 1148-1151.
https://doi.org/10.1126/science.1081315
[59]  Zhao, T., Wang, Z., Fang, J., et al. (2022) HTLV-1 Activates YAP via NF-κB/p65 to Promote Oncogenesis. Proceedings of the National Academy of Sciences of the United States of America, 119, e2115316119.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133