全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于鱼群算法优化的BP神经网络模型的师范专业毕业要求达成度评价
Evaluation of Graduation Requirements of Teachers Major Based on BP Neural Network Model Optimized by Fish Swarm Algorithm

DOI: 10.12677/AE.2022.124184, PP. 1177-1184

Keywords: 师范认证,人才培养,毕业要求,鱼群算法,神经网络
Normal Certification
, Talent Training, Graduation Requirements, Fish Group Algorithm, Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

师范人才培养质量评价对于深化高校人才培养质量保障体系改革具有重要意义,促进培养高素质、专业化、创新型教师的目标达成。师范生毕业要求达成度评价是师范专业建立以产出为导向的质量保证机制的关键环节。本文首先依据师范生毕业要求建立师范专业毕业要求达成度指标体系,对毕业生自评和专业教师的测评数据,运用基于鱼群算法优化的BP神经网络模型进行达成度评价,再通过与用人单位测评数据比较验证模型的有效性和实用性。在师范院校可对评价结果进行全面、详尽、客观的分析,以此为依据持续改进师范专业教师培养。
The quality evaluation of training of teachers is of great significance for deepening the reform of the quality assurance system for talent training in colleges and universities, and promotes the achievement of the goal of training high-quality, professional and innovative teachers. The evaluation of the degree of achievement of the graduation requirements of normal students is a key link in the establishment of a production-oriented quality assurance mechanism for normal majors. This paper firstly establishes an index system for the achievement degree of the graduation requirements of normal students according to the graduation requirements of normal students, and uses the BP neural network model optimized by the fish swarm algorithm to evaluate the degree of achievement based on the self-evaluation of graduates and the evaluation data of professional teachers. The evaluation data are compared to verify the validity and practicability of the model. In normal colleges and universities, a comprehensive, detailed and objective analysis of the evaluation results can be carried out, and on this basis, the training of teachers in normal professional schools can be continuously improved.

References

[1]  胡典顺, 于文字. 面向师范专业认证的认证标准解析[J]. 教师教育论坛, 2019, 32(3): 4-10.
[2]  余璐, 刘云艳. 基于产出导向的学前教育专业毕业要求分解与评价[J]. 教育与教学研究, 2020, 34(3): 106-115.
https://doi.org/10.13627/j.cnki.cdjy.2020.03.014
[3]  田腾飞. 论师范类专业人才培养质量的达成度评价[J]. 教师教育学报, 2020, 7(4): 79-86.
https://doi.org/10.13718/j.cnki.jsjy.2020.04.011
[4]  陈俊清, 朱文兴. 基于人工鱼群算法的分类规则发现[J]. 福州大学学报: 自然科学版, 2007, 35(1): 25-30.
[5]  路石俊. 内蒙古500 kV变电站全生命周期成本管理研究[D]: [博士学位论文]. 北京: 华北电力大学, 2010.
[6]  杨淑霞, 韩奇, 徐琳茜, 路石俊. 基于鱼群算法优化BP神经网络的电力客户满意度综合评价方法[J]. 电网技术, 2011, 35(5): 146-151.
https://doi.org/10.13335/j.1000-3673.pst.2011.05.020
[7]  龚波, 曾飞艳. 一种改进人工鱼群算法对BP神经网络的优化研究[J]. 湖南科技大学学报(自然科学版), 2016, 31(1): 86-90.
https://doi.org/10.13582/j.cnki.1672-9102.2016.01.015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133