全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于成像测井灰度值的GA-SVR在白云岩储层孔隙度预测中的应用——以川西地区L组为例
Application of GA-SVR Based on Gray Value of Imaging Logging in Porosity Prediction of Dolomite Reservoir—A Case Study of L Formation in Western Sichuan

DOI: 10.12677/AG.2022.124052, PP. 515-524

Keywords: 孔隙度,白云岩,机器学习,成像测井,常规测井
Porosity
, Dolomite, Machine Learning, Imaging Logging, Well Logging

Full-Text   Cite this paper   Add to My Lib

Abstract:

孔隙度的准确性是优质储层识别和建模的重要基础。白云岩储层孔隙结构复杂,发育类型多,其孔隙度难以精确预测。通过采集川西地区L组白云岩储层182个取心样本、常规测井和成像测井资料,将6种机器学习模型应用于不同测井参数的训练与测试,并评价不同模型的预测性能。结果表明,引入不敏感损失函数度量的遗传算法支持向量回归机模型的预测效果最好,决定系数高达0.87。采用常规测井与成像测井相结合的机器学习综合算法,能有效降低白云岩储层非均质性的影响,提高孔隙度的解释精度,为优质白云岩储层的识别奠定了良好的基础。
The accuracy of porosity is an important basis for the identification and modeling of high-quality reservoir. The pore structure of heterogeneous dolomite reservoir is complex and there are many types of development, so it is difficult to accurately predict. By collecting 182 core samples, conventional logging data and imaging logging data of dolostone reservoir in L Formation in Western Sichuan. Six machine learning models are applied to the training and testing of different logging parameters, and the prediction performance of different models is evaluated. The results show that the genetic algorithm support vector regression model with epsilon has the best prediction effect, and the coefficient of determination is 0.87. The integrated method of combining conventional logging and imaging logging with machine learning can effectively reduce the influence of dolomite reservoir heterogeneity, improve the interpretation accuracy of porosity, lay a good foundation for the identification of high-quality dolomite reservoir, and explore a new way of porosity interpretation.

References

[1]  司马立强, 疏壮志. 碳酸盐岩储层测井评价方法及应用[M]. 北京: 石油工业出版社, 2009.
[2]  Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. (2001) A Comparative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293.
https://doi.org/10.1080/028418501127346846
[3]  Zhong, Z. and Carr, T.R. (2019) Application of a New Hybrid Particle Swarm Optimization-Mixed Kernels Function-Based Support Vector Machine Model for Reservoir Porosity Prediction: A Case Study in Jacksonburg-Stringtown Oil Field, West Virginia, USA. Interpretation, 7, T97-T112.
https://doi.org/10.1190/INT-2018-0093.1
[4]  Li, Y., Kang, Z.J., Xue, Z.J. and Zheng, S. (2018) Theories and Practices of Carbonate Reservoirs Development in China. Petroleum Exploration and Development Online, 45, 712-722.
https://doi.org/10.1016/S1876-3804(18)30074-0
[5]  杨柳青, 陈伟, 查蓓. 利用卷积神经网络对储层孔隙度的预测研究与应用[J]. 地球物理学进展, 2019, 34(4): 1548-1555.
[6]  连承波, 李汉林, 渠芳, 蔡福龙, 张军. 基于测井资料的BP神经网络模型在孔隙度定量预测中的应用[J]. 天然气地球科学, 2006(3): 382-384.
[7]  冯帅, 王连君, 邢雅文, 王娅妮, 周斌, 杨洲鹏. 二连盆地乌兰花凹陷安山岩有利储层预测[J]. 石油地球物理勘探, 2017, 52(S1): 117-122.
[8]  Mathew Nkurlu, B., Shen, C., Asante-Okyere, S., Mulashani, A.K., Chungu, J. and Wang, L. (2020) Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data. Energies (Basel), 13, Article No. 551.
https://doi.org/10.3390/en13030551
[9]  乐友喜, 袁全社. 支持向量机方法在储层预测中的应用[J]. 石油物探, 2005, 44(4): 388-392.
[10]  陈义祥, 任小锋, 牟瑜, 陈惠, 俞保财, 姚海林, 等. 基于电成像测井的致密碳酸盐岩储层有效性评价方法[J]. 测井技术, 2020, 44(1): 49-54.
[11]  李晓辉, 周彦球, 缑艳红, 王玉华, 姜宝彦. 电成像测井孔隙度分析技术及其在碳酸盐岩储层产能预测中的应用[J]. 吉林大学学报(地球科学版), 2012, 42(4): 928-934.
[12]  平海涛, 秦瑞宝, 孙建孟, 刘小梅, 黄涛. 电成像测井孔隙度谱分析及其在复杂储层渗透率评价中的应用研究[J/OL]. 地球物理学进展, 2020: 1-9. http://kns.cnki.net/kcms/detail/11.2982.P.20201109.1408.122.html, 2020-11-09.
[13]  刘瑞林, 谢芳, 肖承文, 张丽莉. 基于小波变换图像分割技术的电成像测井资料裂缝、孔洞面孔率提取方法[J]. 地球物理学报, 2017, 60(12): 4945-4955.
[14]  景建恩, 梅忠武, 李舟波. 塔河油田碳酸盐岩缝洞型储层的测井识别与评价方法研究[J]. 地球物理学进展, 2003, 18(2): 336-341.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133