|
季节性形变盐渍化评价指数
|
Abstract:
现有的盐渍土遥感监测多依赖多光谱信息的专题处理与指数反演方法,受限于土壤光谱响应特征的综合性以及“异物同谱”等问题,客观精准的定量评价仍难以实现。为此,本文提出了一种新型的季节性形变盐渍化评价指数,借助高精度的时序形变信息实现对土壤盐渍化程度的评价。实验于甘肃敦煌地区选取了2018年1月至2020年1月共74景Sentinel-1A影像数据,使用SBAS-DInSAR方法求取时序形变信息以构建季节性形变盐渍化评价指数,联合现有的定量评价方法(如修正的盐渍化评价指数、盐分指数、归一化植被指数)开展综合的比较分析。研究结果表明:季节性形变盐渍化评价指数可以较好的完成对硫酸盐渍土的定量评价;与传统多光谱方法相比,季节性形变盐渍化评价指数与土壤盐渍化程度相关系数的绝对值最大(R = ?0.2611)且曲线拟合结果明显优于其他方法(其拟合结果与土壤盐渍化程度的决定系数最大为0.3358,而其他方法最大仅为0.2085),验证了季节性形变盐渍化评价指数相对于多光谱指数独特的优势。
The existing remote sensing monitoring of saline soil mostly relies on the thematic processing and index inversion methods of multispectral information. However, due to the comprehensive characteristics of soil spectral response and the “same spectrum of foreign objects”, it is still difficult to achieve objective and accurate quantitative evaluation. Therefore, a new seasonal deformation salinization evaluation index is proposed in this paper to realize the quantitative evaluation of soil salinization with the help of high-precision time-series deformation information. In this study, 74 Sentinel-1A images were selected from January 2018 to January 2020 in Dunhuang, Gansu Province, and the SBAS-DinSAR method was used to obtain the temporal deformation information to con-struct the seasonal deformation salinization evaluation index. Combined with existing quantitative evaluation methods (such as modified salinization evaluation index, salinity index and normalized vegetation index), comprehensive comparative analysis was carried out. The results show that the seasonal deformation salinization index can complete the quantitative evaluation of sulfate soil. Compared with the traditional multispectral method, the absolute value of correlation coefficient between seasonal deformation salinization evaluation index and soil salinization degree was the largest (R = ?0.2611), and the curve fitting result was significantly better than that of other meth-ods (the maximum coefficient of correlation between fitting result and soil salinization degree was 0.3358, while the maximum coefficient of other methods was only 0.2085). The seasonal deformation salinization evaluation index has a unique advantage over the multispectral?index.
[1] | 关元秀, 刘高焕. 区域土壤盐渍化遥感监测研究综述[J]. 遥感技术与应用, 2001, 16(1): 40-44. |
[2] | 杜婷, 焦继宗, 颉耀文, 等. 利用Landsat影像定量评价土地盐渍化的方法探索——以瓜州-敦煌地区为例[J]. 湖北农业科学, 2018, 57(1): 51-55. |
[3] | 李和平, 田长彦, 乔木, 吴世新. 新疆耕地盐渍土遥感信息解译标志及指标探讨[J]. 干旱地区农业研究, 2009, 27(2): 218-222. |
[4] | 刘国祥, 陈强, 罗小军, 蔡国林. InSAR原理与应用[M]. 北京: 科学出版社, 2019. |
[5] | 杨茂华. 敦煌机场道面病害分析[J]. 青海交通科技, 2006(5): 32-32. |
[6] | 杨鹏. 粗颗粒盐渍土在温度与水分边界年度循环条件下的变形特性及机理研究[D]: [博士学位论文]. 兰州: 兰州理工大学. |
[7] | 甘肃省统计局. 甘肃发展年鉴[M]. 北京: 中国统计出版社, 2016. |
[8] | 包卫星, 杨晓华, 谢永利. 典型天然盐渍土多次冻融循环盐胀试验研究[J]. 岩土工程学报, 2006, 28(11): 1991-1995. |
[9] | 严耿升, 张虎元, 王志硕, 等. 风电场盐渍土地基静载试验研究[J]. 西北水电, 2011(6): 75-80. |
[10] | 张莎莎, 杨晓华, 戴志仁. 天然粗颗粒盐渍土多次冻融循环盐胀试验[J]. 中国公路学报, 2009, 22(4): 28-32. |
[11] | 张平川, 董兆祥. 敦煌民用机场地基的破坏机制与治理对策[J]. 水文地质工程地质, 2003, 30(3): 78-80. |
[12] | 王飞, 丁建丽, 魏阳, 周倩倩, 杨晓东, 王前锋. 基于Landsat系列数据的盐分指数和植被指数对土壤盐度变异性的响应分析——以新疆天山南北典型绿洲为例[J]. 生态学报, 2017, 37(15): 5007-5022. |
[13] | Douaoui, A.E.K., Nicolas, H. and Walter, C. (2006) Detecting Salinity Hazards within a Semiarid Context by Means of combining Soil and Remote-Sensing Data. Geoderma, 134, 217-230. https://doi.org/10.1016/j.geoderma.2005.10.009 |
[14] | Khan, N.M., Rastoskuev, V.V., Sato, Y. and Shiozawa, S. (2005) Assessment of Hydrosaline Land Degradation by Using a Simple Approach of Remote Sensing Indicators. Agricultural Water Management, 77, 96-109.
https://doi.org/10.1016/j.agwat.2004.09.038 |
[15] | Brunner, P., Li, H.T., Kinzelbach, W., et al. (2007) Generating Soil Electrical Conductivity Maps at Regional Level by Integrating Measurements on the Ground and Remote Sensing Data. International Journal of Remote Sensing, 28, 3341-3361. https://doi.org/10.1080/01431160600928641 |
[16] | Lobell, D.B., Lesch, S.M., Corwin, D.L., et al. (2010) Region-al-Scale Assessment of Soil Salinity in the Red River Valley Using Multi-Year MODIS EVI and NDVI. Journal of Environmental Quality, 39, 35-41.
https://doi.org/10.2134/jeq2009.0140 |
[17] | Allbed, A., et al. (2014) Assessing Soil Salinity Using Soil Salinity and Vegetation Indices Derived from IKONOS High-Spatial Resolution Imageries: Applications in a Date Palm Dominated Region. Geoderma, s230-s231, 1-8.
https://doi.org/10.1016/j.geoderma.2014.03.025 |
[18] | Wu, W. (2014) The Generalized Difference Vegetation Index (GDVI) for Dryland Characterization. Remote Sensing, 6, 1211-1233. https://doi.org/10.3390/rs6021211 |
[19] | Scudiero, E., Skaggs, T.H. and Corwin, D.L. (2015) Regional-Scale Soil Salinity Assessment Using Landsat ETM+ Canopy Reflectance. Remote Sensing of Environment, 169, 335-343. https://doi.org/10.1016/j.rse.2015.08.026 |
[20] | Scudiero, E., Skaggs, T.H. and Corwin, D.L. (2014) Regional Scale Soil Salinity Evaluation Using Landsat 7, Western San Joaquin Valley, California, USA. Geoderma Regional, 2-3, 82-90. https://doi.org/10.1016/j.geodrs.2014.10.004 |
[21] | Fernández-Buces, N., Siebe, C., Cram, S., et al. (2006) Mapping Soil Salinity Using a Combined Spectral Response Index for Bare Soil and Vegetation: A Case Study in the Former Lake Texcoco, Mexico. Journal of Arid Environments, 65, 644-667. https://doi.org/10.1016/j.jaridenv.2005.08.005 |
[22] | 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5): 107-114. |
[23] | 王飞, 丁建丽, 伍漫春. 基于NDVI-SI特征空间的土壤盐渍化遥感模型[J]. 农业工程学报, 2010, 26(8): 168-173. |
[24] | 乔舰. 组内相关系数的理论基础及建模应用[J]. 统计与信息论坛, 2016, 31(11): 44-48. |