全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新冠肺炎疫情对中国旅游业的冲击影响研究——基于修正的TGARCH-M模型
Study on the Impact of COVID-19 Epidemic on Chinese Tourism Industry

DOI: 10.12677/SA.2022.112044, PP. 410-419

Keywords: TGARCH-M模型,申万旅游综指,波动冲击量,新冠肺炎疫情
TGARCH-M model
, Shenwan Tourism Composite Index, Fluctuating Impact Amount, COVID-19

Full-Text   Cite this paper   Add to My Lib

Abstract:

新冠肺炎疫情已给我国的旅游业带来了巨大冲击。文章基于2014年1月2日到2021年1月5日共1709个申万旅游综合指数的日度数据,分析了近7年我国旅游业的发展情况。并通过对疫情期间旅游业的综合指数生成过程中融入波动冲击量构建了高拟合程度的服从t分布状态的TGARCH-M模型,研究了新冠肺炎疫情给我国旅游业带来的额外冲击。实证结果表明:我国近7年的旅游业在市场上的波动表现出正反馈效应,正向冲击与负向冲击相比没表现出明显的“杠杆”效应;旅游业在疫情发生前后呈现出不同程度的波动性,疫情发生后旅游业指数的波动冲击额外增加了2.08 × 10?5个单位;但由于额外增加波动冲击值较小,说明疫情对我国旅游业带来的冲击性并不是那么严重,也表明疫情过后旅游业能够以较快的速度恢复。
The COVID-19 epidemic has brought a great impact on China’s tourism industry. This paper analyzes the development of China’s tourism industry in the past seven years based on the daily data of 1,709 Shenwan Tourism Composite Index from January 2, 2014 to January 5, 2021. In addition, the TGARCH-M model with high fitting degree following the T-distribution state was constructed by integrating the fluctuating impact amount into the comprehensive index generation process of tourism industry during the epidemic period, and the additional impact of COVID-19 epidemic on China’s tourism industry was studied. The empirical results show that the fluctuation of China’s tourism industry in the market in the recent seven years shows a positive feedback effect, and the positive impact has no obvious “leverage” effect compared with the negative impact. After the outbreak of the epidemic, the Fluctuating impact of tourism index increased by 2.08 × 10?5 units. Due to the small impact value of additional fluctuations, it indicates that the impact of the epidemic on China's tourism industry is not so serious, and it also indicates that the tourism industry can recover at a fast speed after the epidemic.

References

[1]  刘淑芳, 杨虎涛. 新冠疫情对中日韩三国旅游业的影响研究[J]. 亚太经济, 2020(2): 21-29.
[2]  明庆忠, 赵建平. 新冠肺炎疫情对旅游业的影响及应对策略[J]. 学术探索, 2020(3): 124-131.
[3]  王少华, 王璐, 王梦茵, 王伟. 新冠肺炎疫情对河南省旅游业的冲击表征及影响机理研究[J]. 地域研究与开发, 2020, 39(2): 1-7.
[4]  申军波, 徐彤, 陆明明, 翟燕霞. 疫情冲击下旅游业应对策略与后疫情时期发展趋势[J]. 宏观经济管理, 2020(8): 55-60.
[5]  严伟, 严思平. 新冠疫情对旅游业发展的影响与应对策略[J]. 商业经济研究, 2020(11): 190-192.
[6]  王庆生, 刘诗涵. 新冠肺炎疫情对国内游客旅游意愿与行为的影响[J]. 地域研究与开发, 2020, 39(4): 1-5.
[7]  王金伟, 王国权, 王欣, 张俊娇. 新冠肺炎疫情下公众焦虑心理对出游意愿的影响研究——旅游业恢复信心的中介作用[J]. 西南民族大学学报(人文社会科学版), 2020, 41(11): 220-227.
[8]  孙玉环. 基于SARIMA模型的SARS对中国入境旅游收入影响的定量分析[J]. 旅游科学, 2006(1): 18-21.
[9]  俞金国, 王丽华. 后SARS时期中国入境旅游人数恢复评估——基于ARIMA模型[J]. 统计与决策, 2005(14): 84-87.
[10]  王箐, 王钟黎, 李士雪, 薛付忠. “新冠肺炎”疫情对中国股市价格波动的短期影响[J]. 经济与管理评论, 2020, 36(6): 16-27.
[11]  朱迎波, 葛全胜, 魏小安, 董培南, 何连生, 彭唬. SARS对中国入境旅游人数影响的研究[J]. 地理研究, 2003, 22(5): 551-559.
[12]  桂文林, 韩兆洲. 危机事件对中国入境旅游外汇收入影响评估[J]. 旅游学刊, 2010, 25(12): 28-36.
[13]  Engle, R. (1982) Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation. Econometrica, 50, 987-1008.
https://doi.org/10.2307/1912773
[14]  Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327.
https://doi.org/10.1016/0304-4076(86)90063-1
[15]  Glosten, L.R., Jagannathan, R. and Runkle, D.E. (1993) On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. Journal of Finance, 48, 1779-1801.
https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
[16]  何诚颖, 闻岳春, 常雅丽, 耿晓旭. 新冠病毒肺炎疫情对中国经济影响的测度分析[J]. 数量经济技术经济研究, 2020, 37(5): 3-22.
[17]  Robert, E., Lilien, D.M. and Robins, R.P. (1987) Estimating Time Varying Risk Premia in the Term Structure: The ARCH-M Model. Econometrica, 55, 391-407.
https://doi.org/10.2307/1913242

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133