全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Competition of Electron Capture and Beta Decay Rates in Explosive Astrophysical Scenario of Type II Supernova

DOI: 10.4236/wjnst.2022.122008, PP. 88-100

Keywords: Protoneutron Star, Weak Interaction Processes, Neutrinos

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stellar weak interaction processes play a significant role during the supernova explosion condition after collapse leading to the formation of neutron star. In dynamic events like core-collapse supernovae the high entropy wind scenario arises from considerations of the newly born proto-neutron star. Here, the late neutrinos interact with matter of the outermost neutron star layers leading to moderately neutron rich ejecta. We study the electron capture and beta decay rates of Co and Cd isotopes at various temperature and density conditions in an astrophysical environment and found that the beta decay rates are much higher than the corresponding electron capture rates at all the conditions.

References

[1]  Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F. (1957) Synthesis of the Elements in Stars. Reviews of Modern Physics, 29, 547-650.
https://doi.org/10.1103/RevModPhys.29.547
[2]  Wehmeyer, B., Pignatari, M. and Thielemann, F.-K. (2015) Galactic Evolution of Rapid Neutron Capture Process Abundances: The Inhomogeneous Approach. Monthly Notices of the Royal Astronomical Society, 452, 1970-1981.
https://doi.org/10.1093/mnras/stv1352
[3]  Kajino, T. and Mathews, G.J. (2016) Impact of New Data for Neutron-Rich Heavy Nuclei on Theoretical Models for r-Process Nucleosynthesis.
https://arxiv.org/pdf/1610.07929.pdf
[4]  Meyer, B.S., McLaughlin, G.C. and Fuller, G.M. (1998) Neutrino Capture and r-Process Nucleosynthesis. Physical Review C, 58, 3696-3710.
https://doi.org/10.1103/PhysRevC.58.3696
[5]  Mumpower, M.R., Surman, R., McLaughlin, G.C. and Aprahamian, A. (2016) The Impact of Individual Nuclear Properties on r-Process Nucleosynthesis. Progress in Particle and Nuclear Physics, 86, 86-126.
https://doi.org/10.1016/j.ppnp.2015.09.001
[6]  Heger, A., Woosley, S.E., Martınez-Pinedo, G. and Langanke, K. (2001) Presupernova Evolution with Improved Rates for Weak Interactions. The Astrophysical Journal, 560, 307.
https://doi.org/10.1086/324092
[7]  Kar, K., Chakravarti, S. and Manfredi, V.R. (2006) Beta Decay Rates for Nuclei with 115https://doi.org/10.1007/s12043-006-0081-2
[8]  Rahman, M.-U. and Nabi, J.-U. (2014) Electron Capture Strength on Odd-A Nucleus 59Co in Explosive Astrophysical Environment. Astrophysics and Space Science, 351, 235-242.
https://doi.org/10.1007/s10509-014-1831-0
[9]  Buragohain, M., Pathak, A., Sarre, P., Onaka, T. and Sakon, I. (2015) Theoretical Study of Deuteronated PAHs as Carriers for IR Emission Features in the ISM. Monthly Notices of the Royal Astronomical Society, 454, 193-204.
https://doi.org/10.1093/mnras/stv1946
[10]  Cooperstein, J. and Wambach, J. (1984) Electron Capture in Stellar Collapse. Nuclear Physics A, 420, 591-620.
https://doi.org/10.1016/0375-9474(84)90673-0
[11]  Thielemann, F.-K., Kolbe, E., Martinez-Pinedo, G., Panov, I., Rauscher, T., Kratz, K., Pfeiffer, B. and Rosswog, S. (2003) Nuclear Physics Issues of the r-Process. In: Capture Gamma-Ray Spectroscopy and Related Topics, World Scientific Publishing, Singapore, 311.
https://www.worldscientific.com/doi/pdf/10.1142/9789812795151_fmatter
[12]  Schramm, D.N. (1973) Explosive r-Process Nucleosynthesis. In: Schramm, D.N. and Arnett, W.D., Eds., Explosive Nucleosynthesis, University of Texas Press, Austin, 84.
https://ui.adsabs.harvard.edu/abs/1973ApJ...185..293S/abstract
[13]  Takahashi, K., Witti, J. and Janka, H.-T. (1994) Nucleosynthesis in Neutrino-Driven Winds from Protoneutron Stars II. The r-Process. A&A, 286, 857.
https://ui.adsabs.harvard.edu/abs/1994A%26A...286..857T/abstract
[14]  Qian, Y.-Z. (2012) Astrophysical Models of r-Process Nucleosynthesis: An Update. In Origin of Matter and Evolution of Galaxies 2011, AIP Conference Proceedings, 201-208.
https://doi.org/10.1063/1.4763396
[15]  Audi, G., Wapstra, A.H. and Thibault, C. (2003) The Ame2003 Atomic Mass Evaluation: (II). Tables, Graphs and References. Nuclear Physics A, 729, 337-676.
https://doi.org/10.1016/j.nuclphysa.2003.11.003
[16]  Baruah, R., Duorah, K. and Duorah, H.L. (2012) Isotopic r-Process Abundances Produced by Supernova Explosions. Astrophysics and Space Science, 340, 291-305.
https://doi.org/10.1007/s10509-012-1064-z
[17]  Cass, J., Passucci, G., Surman, R. and Aprahamian, A. (2012) Beta Decay and the r-Process. Proceedings of Science, 146.
https://doi.org/10.22323/1.146.0154
[18]  Sampaio, J.M., Langanke, K., Martïnez-Pinedo, G., Kolbe, E. and Dean, D.J. (2003) Electron Capture Rates for Core Collapse Supernovae. Nuclear Physics A, 718, 440-442.
https://doi.org/10.1016/S0375-9474(03)00832-7
[19]  Martınez-Pinedo, G., Langanke, K. and Dean, D.J. (2000) Competition of Electron Capture and Beta-Decay Rates in Supernova Collapse. The Astrophysical Journal Supplement Series, 126, 493.
https://doi.org/10.1086/313297
[20]  Langanke, K., Martınez-Pinedo, G. and Sampaio, J.M. (2001) Neutrino Spectra from Stellar Electron Capture. Physical Review, 64, Article ID: 055801.
https://doi.org/10.1103/PhysRevC.64.055801
[21]  Fowler, W.A. and Hoyle, F. (1965) Nucleosynthesis in Massive Stars and Supernovae.
[22]  Cameron, A.G.W. (1959) Photobeta Reactions in Stellar Interiors. Astrophysical Journal, 130, 452.
https://doi.org/10.1086/146735

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133