The purpose of the present work is to construct a nonlinear equation system (85 × 53) using Butcher’s Table and then by solving this system to find the values of all set parameters and finally the reduction formula of the Runge-Kutta (7,9) method (7th order and 9 stages) for the solution of an Ordinary Differential Equation (ODE). Since the system of high order conditions required to be solved is too complicated, we introduce a subsystem from the original system where all coefficients are found with respect to 9 free parameters. These free parameters, as well as some others in addition, are adjusted in such a way to furnish more efficient R-K methods. We use the MATLAB software to solve several of the created subsystems for the comparison of our results which have been solved analytically.
References
[1]
Butcher, J.C. (1963) Coefficients for the Study of Runge-Kutta Integration Processes. Journal of the Australian Mathematical Society, 3, 185-201. https://doi.org/10.1017/S1446788700027932
[2]
Butcher, J.C. (1964) On Runge-Kutta Processes of High Order. Journal of the Australian Mathematical Society, 4, 179-194. https://doi.org/10.1017/S1446788700023387
[3]
Butcher, J.C. (2003) Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Chichester. https://doi.org/10.1002/0470868279
[4]
Runge, C. (1895) Ueber die numerische Auflöung von Differentialgleichungen. Mathematische Annalen, 46, 167-178. https://doi.org/10.1007/BF01446807
[5]
Kutta, W. (1901) Beitrag zur naherungsweisen Integration von Differentialgleichungen. Zeitschrift für angewandte Mathematik und Physik, 46, 435-453.
[6]
Nyström, E.J. (1925) Ueber die numerische Integration von Differentialgleichungen. Acta Societatis Scientiarum Fennicae, 50, 1-54.
[7]
Fehlberg, E. (1968) Classical Fifth-, Sixth-, Seventh-, and Eight-Order Runge-Kutta Formulas with Stepsize Control. NASA Technical Report No. R-287, National Aeronautics and Space Administration, Washington DC, 4-13.
[8]
Shanks, M. (1966) Solutions of Differential Equations by Evaluation of Functions. Mathematics of Computation, 20, 21-38. https://doi.org/10.1090/S0025-5718-1966-0187406-1
[9]
Gousidou-Koutita, M. (2009) Numerical Methods with Applications of Ordinary and Partial Differential Equations. University Lectures 2008/9, Aristotle University of Thessaloniki, Thessaloniki, Greece.
[10]
Hŭta, A. (1956) Une amélioration de la méthode de Runge-Kutta-Nyström pour la résolution numérique des équations différentielles du premièr ordre. Acta Facultatis Berum Naturalium Universitatis Comenianae, 1, 201-224.
[11]
Feagin, T. (2009) High-Order Explicit Runge-Kutta Methods Using m-Symmetry. University of Houston, Houston.
[12]
Feagin, T. (2006) A Tenth-Order Runge-Kutta Method with Error Estimate. University of Houston, Houston.
[13]
Hairer, E. (1978) A Runge-Kutta Method of Order 10. IMA Journal of Applied Mathematics, 21, 47-59. https://doi.org/10.1093/imamat/21.1.47
Butcher, J.C. (1965) On the Attainable Order of Runge-Kutta Methods. Mathematics of Computation, 19, 408-417. https://doi.org/10.1090/S0025-5718-1965-0179943-X
[16]
Curtis, A.R. (1990) An Eighth Order Runge-Kutta Process with Eleven Function Evaluations per Step. Numerische Mathematik, 16, 268-277. https://doi.org/10.1007/BF02219778
[17]
Famelis, I.T.H., Papakostas, S.N. and Tsitouras, C. (2004) Symbolic Derivation of Runge-Kutta Order Conditions. Journal of Symbolic Computation, 37, 311-327. https://doi.org/10.1016/j.jsc.2003.07.001
[18]
Papakostas, S.N. and Tsitouras, C. (1999) High Phase-Lag Order Runge-Kutta and Nystrom Pairs. SIAM Journal on Scientific Computing, 21, 747-763. https://doi.org/10.1137/S1064827597315509
[19]
Tsitouras, C. (2001) Optimized Explicit Runge-Kutta Pair of Orders 9(8). Applied Numerical Mathematics, 38, 121-134. https://doi.org/10.1016/S0168-9274(01)00025-3