全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Is the Higgs Field a Positive and Negative Mass Planckion Condensate, and Does the LHC Produce Extreme Dark Energy?

DOI: 10.4236/jhepgc.2022.82033, PP. 432-456

Keywords: Winterberg Model, Quantum Vacuum, Higgs Condensate/Composite Model, Two-Component Superfluid/Supersolid Model for the Vacuum, Positive/Negative Planckion Mass, Q-Theory, Non-Linear Heisenberg Spinor Theory, LHC Energies, Dark Energy, Lattice Substructure for Space

Full-Text   Cite this paper   Add to My Lib

Abstract:

Assuming a two-component, positive and negative mass, superfluid/supersolid for space (the Winterberg model), we model the Higgs field as a condensate made up of a positive and a negative mass, planckion pair. The connection is shown to be consistent (compatible) with the underlying field equations for each field, and the continuity equation is satisfied for both species of planckions, as well as for the Higgs field. An inherent length scale for space (the vacuum) emerges, which we estimate from previous work to be of the order of, l+ (0) = l- (0) = 5.032E-19 meters, for an undisturbed (unperturbed) vacuum. Thus we assume a lattice structure for space, made up of overlapping positive and negative mass wave functions, ψ+, and, ψ-, which together bind to form the Higgs field, giving it its rest mass of 125.35 Gev/c2 with a coherence length equal to its Compton wavelength. If the vacuum experiences an extreme disturbance, such as in a LHC pp collision, it is conjectured that severe dark energy results, on a localized level, with a partial disintegration of the Higgs force field in the surrounding space. The Higgs boson as a quantum excitation in this field results when the vacuum reestablishes itself, within 10-22 seconds, with positive and negative planckion mass number densities equalizing in the disturbed region. Using our fundamental equation relating the Higgs field, φ, to the planckion ψ+ and ψ- wave functions, we calculate the overall vacuum pressure (equal to vacuum energy density), as well as typical ψ+ and ψ- displacements from equilibrium within the vacuum.

References

[1]  The ATLAS Collaboration (2018) Observation of H→bb Decays and VH Production with the ATLAS Detector. Physics Letters B, 786, 59-86.
https://doi.org/10.1016/j.physletb.2018.09.013
[2]  CMS Collaboration (2018) Observation of Higgs Boson Decay to Bottom Quarks. Physical Review Letters, 121, Article ID: 121801.
https://doi.org/10.1103/PhysRevLett.121.121801
[3]  Irving, M. (2019) CERN Precisely Measures the Mass of the Higgs Boson. New Atlas.
https://newatlas.com/physics/higgs-boson-mass-measured/
[4]  Cao, C.J. and Carroll, S.M. (2018) Bulk Entanglement Gravity without a Boundary: Towards Finding Einstein’s Equation in Hilbert Space. Physical Review D, 97, Article ID: 086003.
https://doi.org/10.1103/PhysRevD.97.086003
[5]  Cao, C.J., Carroll, S.M. and Michalakis, S. (2017) Space from Hilbert Space: Recovering Geometry from Bulk Entanglement. Physical Review D, 95, Article ID: 024031.
https://doi.org/10.1103/PhysRevD.95.024031
[6]  Bao, N., Carroll, S.M. and Singh, A. (2017) The Hilbert Space of Quantum Gravity is Locally Finite-Dimensional. International Journal of Modern Physics D, 26, Article ID: 1743013.
https://doi.org/10.1142/S0218271817430131
[7]  Remmen, G.N. (2017) Defining Gravity: Effective Field Theory, Entanglement, and Cosmology. Ph.D. Thesis, California Institute of Technology, Pasadena, 386 p.
[8]  Van Raamsdonk, M. (2010) Building up Space-Time with Quantum Entanglement. International Journal of Modern Physics D, 19, 2429-2435.
https://doi.org/10.1142/S0218271810018529
[9]  Winterberg, F. (2003) Planck Mass Plasma Vacuum Conjecture. Zeitschrift für Naturforschung, 58a, 231-267.
https://doi.org/10.1515/zna-2003-0410
[10]  Winterberg, F. (2002) Planck Mass Rotons as Cold Dark Matter and Quintessence Zeitschrift für Naturforschung, 57a, 202-204.
https://doi.org/10.1515/zna-2002-3-414
[11]  Winterberg, F. (1995) Derivation of Quantum Mechanics from the Boltzmann Equation for the Planck Aether. International Journal of Theoretical Physics, 34, 2145-2164.
https://doi.org/10.1007/BF00673076
[12]  Winterberg, F. (1998) The Planck Aether Model for a Unified Theory of Elementary Particles. International Journal of Theoretical Physics, 33, 1275-1314.
https://doi.org/10.1007/BF00670794
[13]  Winterberg, F. (1993) Physical Continuum and the Problem of a Finitistic Quantum Field Theory. International Journal of Theoretical Physics, 32, 261-277.
https://doi.org/10.1007/BF00673716
[14]  Winterberg, F. (1992) Cosmological Implications of the Planck Aether Model for a Unified Field Theory. Zeitschrift für Naturforschung, 47a, 1217-1226.
https://doi.org/10.1515/zna-1992-1207
[15]  Winterberg, F. (2002) The Planck Aether Hypothesis. The C.F. Gauss Academy of Science Press, Reno, NV.
[16]  Pilot, C. (2021) Does Space Have a Gravitational Susceptibility? A Model for the Density Parameters in the Friedmann Equation. Journal of High Energy Physics, Gravitation, and Cosmology (JHEPGC), 7, 478-507.
https://www.researchgate.net/publication/342993272_Does_Space_Have_a_Gravitational_Susceptibility_A_Model_for_the_Density_Parameters_in_the_Friedmann_Equation
https://doi.org/10.4236/jhepgc.2021.72028
[17]  Pilot, C. (2021) Scaling Behavior for the Susceptibility of the Vacuum. International Journal of Astronomy and Astrophysics (IJAA), 11, 11-36.
https://www.researchgate.net/publication/342993277_Scaling_Behavior_for_the_Susceptibility_of_the_Vacuum_in_a_Polarization_Model_for_the_Cosmos
https://doi.org/10.4236/ijaa.2021.111002
[18]  Pilot, C, (2021) Q-Theory: A Connection between Newton’s Law and Coulomb’s Law? Journal of High Energy Physics, Gravitation and Cosmology (JHEPGC), 7, 632-660.
https://doi.org/10.4236/jhepgc.2021.72037
https://www.researchgate.net/publication/342993436_Theory_A_Connection_between_Newton’s_Law_and_Coulomb’s_Law
[19]  Heisenberg, W. (1938) Uber die in der Theorie der Elementarteilchen auftretende universelle Länge [A Universal Length in the Theory of Elementary Particles]. Annalen der Physik, 424, 20-33.
https://doi.org/10.1002/andp.19384240105
[20]  Heisenberg, W. (1984) Bericht uber die allgemeinen Eigenschaften der Elementarteilchen [Report on the General Properties of Elementary Particles]. In: Blum, W., Dürr, H.P. and Rechenberg, H., Eds., Wissenschaftliche übersichtsartikel, Vorträge und Bücher, Springer, Berlin, 346-358.
https://doi.org/10.1007/978-3-642-61742-3_29
[21]  Heisenberg, W. (1953) Nachr. Akad. Wiss. Göttingen IIa.
[22]  Heisenberg, W. (1954) Zur Quantentheorie nichtrenormierbarer Wellengleichungen. Zeitschrift für Naturforschung, 9a, 292-303.
https://doi.org/10.1515/zna-1954-0406
[23]  Heisenberg, W. and Pauli, W. (1958) Preprint (Unpublished).
[24]  Dürr, H.P., Heisenberg, W., Mitter, H., Schlieder, S. and Yamazaki, K. (1959) Zur Theorie der Elementarteilchen. Zeitschrift für Naturforschung, 14a, 441-485.
https://doi.org/10.1515/zna-1959-5-601
[25]  Dürr, H.P. (1961) Isospin und Parität in der nichtlinearen Spinortheorie. Zeitschrift für Naturforschung, 16a, 327-345.
https://doi.org/10.1515/zna-1961-0401
[26]  Mitter, H. (1964) Quantization of Nonlinear Field Theories and Scale Transformation. Il Nuovo Cimento, 32, 1789-1808.
https://doi.org/10.1007/BF02732811
[27]  Dürr, H.P. (1966) On the Nonlinear Spinor Theory of Elementary Particles. In: Urban, P., Ed., Elementary Particle Theories, Springer, Vienna, 3-41.
https://doi.org/10.1007/978-3-7091-5566-0_2
[28]  Kragh, H. (1995) Arthur March, Werner Heisenberg, and the Search for a Smallest Length/Arthur March, Werner Heisenberg, et la notion de longueur minimale. Revue d’Histoire des Sciences, 48, 401-434.
https://doi.org/10.3406/rhs.1995.1239
https://www.persee.fr/doc/rhs_0151-4105_1995_num_48_4_1239
[29]  Hossenfelder, S. (2013) Minimal Length Scale Scenarios for Quantum Gravity. Living Reviews in Relativity, 16, Article No. 2.
https://doi.org/10.12942/lrr-2013-2
[30]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282.
https://doi.org/10.1142/S0218271809015904
[31]  Kolb, E.W. and Turner, M.S. (1989) The Early Universe. Addison-Wesley, Reading.
[32]  Baumann, D.D. (2015) Lecture Notes on Cosmology.
http://theory.uchicago.edu/~liantaow/my-teaching/dark-matter-472/lectures.pdf
[33]  Mather, J.C., et al. (1999) Calibrator Design for the COBE Far-Infrared Absolute Spectrophotometer (FIRAS). The Astrophysical Journal, 512, 511-520.
https://doi.org/10.1086/306805
[34]  Husdal, L. (2016) On Effective Degrees of Freedom in the Early Universe. Galaxies, 4, 78.
https://doi.org/10.3390/galaxies4040078
[35]  CMS Collaboration (2019) Measurement of the Energy Density as a Function of Pseudorapidity in Proton-Proton Collisions at √s=13 TeV. The European Physical Journal C, 79, Article No. 391.
https://doi.org/10.1140/epjc/s10052-019-6861-x
[36]  Csanád, M., Csörgö, T., Jiang, Z.F. and Yang, C.B. (2017) Initial Energy Density of √s = 7 and 8 TeV p-p Collisions at the LHC. Universe, 3, Article No. 9.
https://doi.org/10.3390/universe3010009
[37]  Facts and Figures about the LHC. CERN.
https://home.cern/resources/faqs/facts-and-figures-about-lhc

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133