全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Extended Oracle Properties of Adaptive Lasso Estimators

DOI: 10.4236/ojs.2022.122015, PP. 210-215

Keywords: Adaptive Lasso, Asymptotics, Oracle Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the asymptotic properties of adaptive lasso estimators when some components of the parameter of interest β are strictly different than zero, while other components may be zero or may converge to zero with rate n-δ, with δ>0, where n denotes the sample size. To achieve this objective, we analyze the convergence/divergence rates of each term in the first-order conditions of adaptive lasso estimators. First, we derive conditions that allow selecting tuning parameters in order to ensure that adaptive lasso estimates of n-δ-components indeed collapse to zero. Second, in this case, we also derive asymptotic distributions of adaptive lasso estimators for nonzero components. When δ>1/2, we obtain the usual n1/2-asymptotic normal distribution, while when 0<δ 1/2, we show nδ-consistency combined with (biased) n1/2-δ-asymptotic normality for nonzero components. We call these properties, Extended Oracle Properties. These results allow practitioners to exclude in their model the asymptotically negligible variables and make inferences on the asymptotically relevant variables.

References

[1]  Zou, H. (2006) The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association, 101, 1418-1429.
https://doi.org/10.1198/016214506000000735
[2]  Tibshirani, R.J. (1996) Regression Analysis and Selection via the Lasso. Journal of the Royal Statistical Society, Series B, 21, 267-288.
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
[3]  Fan, J. and Li, R. (2001) Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96, 1348-1360.
https://doi.org/10.1198/016214501753382273
[4]  Zhao, P. and Yu, B. (2006) On Model Selection Consistency of Lasso. Journal of Machine Learning Research, 7, 2541-2563.
[5]  Meinshausen, N. and Yu, B. (2009) Lasso-Type Recovery of Sparse Representation for High-Dimensional Data. Annals of Statistics, 37, 246-270.
https://doi.org/10.1214/07-AOS582
[6]  Fan, J. and Peng, H. (2004) On Nonconcave Penalized Likelihood with Diverging Number of Parameters. Annals of Statistics, 32, 928-961.
https://doi.org/10.1214/009053604000000256
[7]  Zou, H. and Zhang, H. (2009) On the Adaptive Elastic Net with a Diverging Number of Parameters. Annals of Statistics, 37, 1733-1751.
https://doi.org/10.1214/08-AOS625
[8]  Caner, M. (2009) Lasso-Type GMM Estimtor. Econometric Theory, 25, 270-290.
https://doi.org/10.1017/S0266466608090099
[9]  Caner, M. and Zang, H.H. (2014) Adaptive Elastic Net for Generalized Methods of Moment. Journal of Business and Economic Statistic, 32, 30-47.
https://doi.org/10.1080/07350015.2013.836104
[10]  Audrino, F. and Camponovo, L, (2018) Oracle Properties, Bias Correction, and Inference of the Adaptive Lasso for Time Series Extremum Estimators. Journal of Time Series Analysis, 39, 111-128.
https://doi.org/10.1111/jtsa.12270
[11]  Camponovo, L. (2020) Bootstrap Inference for Penalized GMM Estimators with Oracle Properties. Econometric Reviews, 39, 362-372.
https://doi.org/10.1080/07474938.2019.1630076
[12]  Bühlmann, P. and van de Geer, S. (2011) Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Series in Statistics, Springer, Heidelberg.
https://doi.org/10.1007/978-3-642-20192-9
[13]  Zhang, C.H. and Zhang, T. (2012) A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems. Statistical Science, 27, 576-593.
https://doi.org/10.1214/12-STS399
[14]  Chatterjee, A. and Lahiri, S.N. (2011) Bootstrapping Lasso Estimators. Journal of the American Statistical Association, 106, 608-625.
https://doi.org/10.1198/jasa.2011.tm10159
[15]  Camponovo, L. (2015) On the Validity of the Pairs Bootstrap for Lasso Estimators. Biometrika, 102, 981-987.
https://doi.org/10.1093/biomet/asv039

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133