全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantitative Structure-Activity Relationship Study of a Benzimidazole-Derived Series Inhibiting Mycobacterium tuberculosis H37Rv

DOI: 10.4236/cc.2022.102004, PP. 71-96

Keywords: Mycobacterium tuberculosis H37Rv, Benzimidazole Derivatives, QSAR, ANN, Applicability Domain

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work was carried out on a series of twenty-two (22) benzimidazole derivatives with inhibitory activities against Mycobacterium tuberculosis H37Rv by applying the Quantitative Structure-Activity Relationship (QSAR) method. The molecules were optimized at the level DFT/B3LYP/6-31 + G (d, p), to obtain the molecular descriptors. We used three statistical learning tools namely, the linear multiple regression (LMR) method, the nonlinear regression (NLMR) and the artificial neural network (ANN) method. These methods allowed us to obtain three (3) quantitative models from the quantum descriptors that are, chemical potential (μ), polarizability (α), bond length l (C = N), and lipophilicity. These models showed good statistical performance. Among these, the ANN has a significantly better predictive ability R2 = 0.9995; RMSE = 0.0149; F = 31879.0548. The external validation tests verify all the criteria of Tropsha et al. and Roy et al. Also, the internal validation tests show that the model has a very satisfactory internal predictive character and can be considered as robust. Moreover, the applicability range of this model determined from the levers shows that a prediction of the pMIC of the new benzimidazole derivatives is acceptable when its lever value is lower than 1.

References

[1]  Institut Pasteur.
https://www.pasteur.fr/fr/centre-medical/fiches-maladies/tuberculose
[2]  OMS (Organisation Mondiale de la Santé) (2021) Tuberculose.
https://www.who.int/fr/news-room/fact-sheets/detail/tuberculosis
[3]  Gabo, G. (2021) Prévalence de la tuberculose en Côte d’Ivoire: 19 976 porteurs de la maladie dépistés en 2020.
https://www.fratmat.info/article/211803/societe/santeacute/prevalence-de-la-tuberculose-en-cote-divoire-19-976-porteurs-de-la-maladie-depistes-en-2020
[4]  Castagnolo, D., Manetti, F., Radi, M., Bechi, B., Pagano, M., De Logu, A., Meleddu, R., Saddi, M. and Botta, M. (2009) Synthesis, Biological Evaluation, and SAR Study of Novel Pyrazole Analogues as Inhibitors of Mycobacterium tuberculosis: Part 2. Synthesis of Rigid Pyrazolones. Bioorganic & Medicinal Chemistry, 17, 5716-5721.
https://doi.org/10.1016/j.bmc.2009.05.058
[5]  Raynaud, C., Daher, W., Johansen, M., Roquet-Baneres, F., Blaise, M., Onajole, O., Kozikowski, A., Herrmann, J.-L., Dziadek, J., Gobis, K. and Kremer, L. (2020) Active Benzimidazole Derivatives Targeting the MmpL3 Transporter in Mycobacterium abscessus. ACS Infectious Diseases, 6, 324-337.
https://doi.org/10.1021/acsinfecdis.9b00389
[6]  Garuti, L., Roberti, M., Malagoli, M., Rossi, T. and Castelli, M. (2001) Synthèse et activité antiproliférative de certains thiazolylbenzimidazole-4,7-diones. Bioorganic & Medicinal Chemistry Letters, 11, 3147-3149.
https://doi.org/10.1016/S0960-894X(01)00639-4
[7]  Rao, A., Chimirri, A., De Clercq, E., Monforte, A., Monforte, P., Pannecouque, C. and Zappala, M. (2002) Synthesis and Anti-HIV Activity of 1-(2,6-difluorophenyl)-1H,3H-thiazolo[3,4-a]benzimidazole Structurally-Related 1,2-substituted Benzimidazoles. Il Farmaco, 57, 819-823.
https://doi.org/10.1016/S0014-827X(02)01300-9
[8]  Valdez, J., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Navarrete-Vázquez, G., Tapia, A., Cortés, R., Hernández, M. and Castillo, R. (2002) Synthesis and Antiparasitic Activity of 1H-Benzimidazole Derivatives. Bioorganic & Medicinal Chemistry Letters, 12, 2221-2224.
https://doi.org/10.1016/S0960-894X(02)00346-3
[9]  Thakurdesai, P., Wadodkar, S. and Chopade, C. (2007) Synthesis and Anti-Inflammatory Activity of Some Benzimidazole-2-Carboxylic Acids. Pharmacologyonline, 1, 314-329.
[10]  Ayhan-Kilcigil, G., Kus, C., Ozdamar, E., Can-Eke, B. and Iscan, M. (2007) Synthesis and Antioxidant Capacities of Some New Benzimidazole Derivatives. Archiv der Pharmazie, 340, 607-611.
https://doi.org/10.1002/ardp.200700088
[11]  Serafin, B., Borkowska, G., Główczyk, J., Kowalska, I. and Rump, S. (1989) Potential Antihypertensive Benzimidazole Derivatives. Polish Journal of Pharmacology and Pharmacy, 41, 89-96.
[12]  Oprea, T.I. (2005) Chemoinformatics in Drug Discovery. Wiley-VCH Verlag GmbH & Co. KGaA, Hoboken.
https://doi.org/10.1002/3527603743
[13]  Rekka, E.A. and Kourounakis, P.N. (2008) Chemistry and Molecular Aspects of Drug Design and Action. CRC Press, Boca Raton.
https://doi.org/10.1201/9781420008272
[14]  Frisch, M.J., Trucks, G.W., Schlegel, H.B. and Scuseria, G.E. (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford.
[15]  Chattaraj, P.K., Cedillo, A. and Parr, R.G. (1991) Variational Method for Determining the Fukui Function and Chemical Hardness of an Electronic System. The Journal of Chemical Physics, 103, 7645-7646.
https://doi.org/10.1063/1.470284
[16]  Ayers, P.W. and Parr, R.G. (2000) Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited. Journal of the American Chemical Society, 122, 2010-2018.
https://doi.org/10.1021/ja9924039
[17]  De Proft, F.J., Martin, M.L. and Geerlings, P. (1996) On the Performance of Density Functional Methods for Describing Atomic Populations, Dipole Moments and Infrared Intensities. Chemical Physics Letters, 250, 393.
https://doi.org/10.12980/APJTB.4.2014C1012
[18]  Hansch, C., Sammes, P.G. and Taylor, J.B. (1990) Comprehensive Medicinal Chemistry. Computers and the Medicinal Chemist, Vol. 4, Pergamon Press, Oxford, 33-58.
[19]  Franke, R. (1984) Theoretical Drug Design Methods. Elsevier, Amsterdam.
[20]  Chaltterjee, S., Hadi, A. and Price, B. (2000) Regression Analysis by Examples. Wiley VCH, New York.
[21]  Phuong, H. (2007) Synthèse et étude des relations structure/activité quantitatives (QSAR/2D) d’analoguesBenzo[c]phénanthridiniques. France.
[22]  Microsoft Excel, Miicrosoft Office Version 2016.
[23]  XLSTAT Version (2014) XLSTAT and Addinsoft are Registered Trademarks of Addinsoft.
[24]  JMPPro13 (2014) Statistical Discovery. SAS Institute Inc., Scintilla, 1998-2014.
[25]  Tammo (1995) Theoretical Analysis of Molecular Membrane Organization. CRC, Raton.
[26]  Rutkowska, E., Pajak, K. and Jozwiak, K. (2013) Lipophilicity—Methods of Determination and Its Role in Medicinal Chemistry. Acta Poloniae Pharmaceutica: Drug Research, 70, 3-18.
[27]  Bakht, M.A., Alajmi, M.F., Alam, P., Alam, A., Alam, P. and Aljarba, T.M. (2014) Theoretical and Experimental Study on Lipophilicity and Wound Healing Activity of Ginger Compounds. Asian Pacific Journal of Tropical Biomedicine, 4, 329-333.
https://doi.org/10.12980/APJTB.4.2014C1012
[28]  Kujawski, J., Popielarska, H., Myka, A., Drabińska, B. and Bernard, M.K. (2012) The logP Parameter as a Molecular Descriptor in the Computer-Aided Drug Design—An Overview. Computational Methods in Science and Technology, 18, 81-88.
https://doi.org/10.12921/cmst.2012.18.02.81-88
[29]  Cozma, A., Zaharia, V., Ignat, A., Gocan, S. and Grinberg, N. (2012) Prediction of the Lipophilicity of Nine New Synthesized Selenazoly and Three Aroyl-Hydrazinoselenazoles Derivatives by Reversed-Phase High Performance Thin-Layer Chromatography. Journal of Chromatographic Science, 50, 157-161.
https://doi.org/10.1093/chromsci/bmr034
[30]  Acdlabs (2010) Advanced Chemistry Development/Chemskecht, 1994-2010.
[31]  Snedecor, G.W. and Cochran, W.G. (1967) Methods, Statistical. Oxford and IBH, New Delhi, 381.
[32]  Kangah, N.J.-B., Koné, M.G.-R., Kodjo, C.G., N’guessan, B.R., Kablan, A.L.C., Yéo, S.A. and Ziao, N. (2017) Antibacterial Activity of Schiff Bases Derived from Ortho Diaminocyclohexane, Meta-Phenylenediamine and 1,6-Diaminohexane: Qsar Study with Quantum Descriptors. International Journal of Pharmaceutical Science Invention, 6, 38-43.
[33]  Esposito, E.X., Hopfinger, A.J. and Madura, J.D. (2004) Methods for Applying the Quantitative Structure-Activity Relationship Paradigm. In: Bajorath, J., Ed., Chemoinformatics, Vol. 275, Humana Press, Totowa, 131-213.
https://doi.org/10.1385/1-59259-802-1:131
[34]  Eriksson, L., Jaworska, J., Worth, A., Cronin, M.D., Mc Dowell, R.M. and Gramatica, P. (2003) Methods for Reliability and Uncertainty Assessment and for Applicability Evaluations of Classification- and Regression-Based QSARs. Environmental Health Perspectives, 111, 1361-1375.
https://doi.org/10.1289/ehp.5758
[35]  Golbraikh, A. and Tropsha, A. (2002) Beware of q2. Journal of Molecular Graphics and Modelling, 20, 269-276.
https://doi.org/10.1016/S1093-3263(01)00123-1
[36]  Tropsha, A., Gramatica, P. and Gombar, V.K. (2003) The Importance of Being Earnest, Validation Is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR & Combinatorial Science, 22, 69-77.
https://doi.org/10.1002/qsar.200390007
[37]  Ouattara, O., Affi, T.S., Koné, M.G.-R., Bamba, K. and Ziao, N. (2017) Can Empirical Descriptors Reliably Predict Molecular Lipophilicity? A QSPR Study Investigation. International Journal of Engineering Research and Application, 7, 50-56.
https://doi.org/10.9790/9622-0705015056
[38]  Roy, P.P. and Roy, K. (2008) On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR & Combinatorial Science, 27, 302-313.
https://doi.org/10.1002/qsar.200710043
[39]  Hea, G., Fenga, L. and Chena, H. (2012) International Symposium on Safety Science and Engineering in China. Procedia Engineering, 43, 204-209.
[40]  Dreyfus, G. (1998) Réseaux de neurones artificiels. Toulouse.
[41]  Dreyfus, G., Martinez, J., Samuelides, M., Gordon, M., Badran, F., Thiria, S.and Herault, L. (2002) Réseaux de Neurones Artificiels. 2 édition, Groupe Eyrolles, New York, 374.
https://doi.org/10.1177/026119290503300510
[42]  Jeliazkova, N.N. and Jaworska, J. (2005) An Approach to Determining Applicability Domains for QSAR Group Contribution Models: An Analysis of SRC KOWWIN. Alternatives to Laboratory Animals, 33, 461-470.
https://doi.org/10.1177/026119290503300510
[43]  Sahigara, F., Mansouri, K., Ballabio, D., Mauri, A. and Todeschini, V.C.a.R. (2012) Comparison of Different Approaches to Define the Applicability Domain of QSAR Models. Molecules, 17, 4791-4810.
https://doi.org/10.3390/molecules17054791
[44]  Roy, K. (2015) Chapter 2. Statistical Methods in QSAR/QSPR. In: A Primer on QSAR/QSPR Modeling, Springer, Cham, 37-59.
https://doi.org/10.1007/978-3-319-17281-1_2
[45]  Jaworska, J., Jeliazkova, N.N. and Aldenberg, T. (2005) QSAR Applicability Domain Estimation by Projection of the Training Set in Descriptor Space: A Review. Alternatives to Laboratory Animals, 33, 445-459.
https://doi.org/10.1155/2016/5137289
[46]  Ghamali, M., Chtita, S., Bouachrine, M. and Lakhlifi, T. (2016) Méthodologie générale d’une étude RQSA/RQSP. Revue Interdisciplinaire, 1, 1-6.
[47]  Chtita, S., Ghamali, M., Hmamouchi, R., Elidrissi, B., Bourass, M., Larif, M., Bouachrine, M. and Lakhlifi, T. (2016) Investigation of Antileishmanial Activities of Acridines Derivatives against Promastigotes and Amastigotes form of Parasites Using QSAR Analysis. Advances in Physical Chemistry, 2016, Article ID: 5137289.
https://doi.org/10.1155/2016/5137289
[48]  Asadollahi, T., Dadfarnia, S., Shabani, A., Ghasemi, J. and Sarkhosh, M. (2011) QSAR Models for CXCR2 Receptor Antagonists Based on the Genetic Algorithm for Data Preprocessing Prior to Application of the PLS Linear Regression Method and Design of the New Compounds Using in Silico Virtual Screening. Molecules, 16, 1928-1955.
https://doi.org/10.3390/molecules16031928
[49]  Chtita, S., Larif, M., Ghamali, M., Bouachrine, M. and Lakhlifi, T. (2015) Quantitative Structure-Activity Relationship Studies of dibenzo[a,d]cycloalkenimine Derivatives for Non-Competitive Antagonists of N-Methyl-D-Aspartate Based on Density Functional Theory with Electronic and Topological Descriptors. Journal of Taibah University for Science, 9, 143-154.
https://doi.org/10.1016/j.jtusci.2014.10.006
[50]  Fortuné, A. (2006) Techniques de Modélisation Moléculaire appliquées à l’Etude et à l’Optimisation de Molécules Immunogènes et de Modulateurs de la Chimiorésistance. Médicaments.
[51]  Tropsha, A. (2010) Best Practices for QSAR Model Development, Validation, and Exploitation. Molecular Informatics, 29, 476-488.
https://doi.org/10.1002/minf.201000061
[52]  Shamsara, J. (2017) Ezqsar: An R Package for Developing QSAR Models Directly From Structures. The Open Medicinal Chemistry Journal, 11, 212-221.
https://doi.org/10.1590/S0103-50532009000400021
[53]  Kiralj, R., Ferreira, M.M.C. and Braz, J. (2009) Basic Validation Procedures for Regression Models in QSAR and QSPR Studies: Theory and Application. Journal of the Brazilian Chemical Society, 20, 770-787.
https://doi.org/10.1590/S0103-50532009000400021
[54]  Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C.P. and Agrawal, R.K. (2011) Validation of QSAR Models—Strategies and Importance. International Journal of Drug Design and Discovery, 2, 511-519.
[55]  Gramatica, P. (2007) Principles of QSAR Models Validation: Internal and External. QSAR & Combinatorial Science, 26, 694-701.
https://doi.org/10.1002/qsar.200610151

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133