全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Peppermint Leaf Flavonoids as SARS-CoV-2 Spike Receptor-Binding Domain Attachment Inhibitors to the Human ACE2 Receptor: A Molecular Docking Study

DOI: 10.4236/ojbiphy.2022.122005, PP. 132-152

Keywords: Coronavirus, Sars-CoV-2, Peppermint Flavonoids, RBD/ACE2 Inhibitors

Full-Text   Cite this paper   Add to My Lib

Abstract:

Virtual screening is a computational technique widely used for identifying small molecules which are most likely to bind to a protein target. In the present work, a molecular docking study is carried out to propose potential candidates for preventing the RBD/ACE2 attachment. These candidates are sixteen different flavonoids present in the peppermint leaf. Results showed that Luteolin 7-O-neohesperidoside is the peppermint flavonoid with a higher binding affinity regarding the RBD/ACE2 complex (about -9.18 Kcal/mol). On the other hand, Sakuranetin presented the lowest affinity (about -6.38 Kcal/mol). Binding affinities of the other peppermint flavonoids ranged from -6.44 Kcal/mol up to -9.05 Kcal/mol. The binding site surface analysis showed pocket-like regions on the RBD/ACE2 complex that yield several interactions (mostly hydrogen bonds) between the flavonoid and the amino acid residues of the proteins. This study can open channels for the understanding of the roles of flavonoids against COVID-19 infection.

References

[1]  Chen, H., Guo, J., Wang, C., Luo, F., Yu, X., Zhang, W., Li, J., Zhao, D., Xu, D., Gong, Q., et al. (2020) Clinical Characteristics and Intrauterine Vertical Transmission Potential of Covid-19 Infection in Nine Pregnant Women: A Retrospective Review of Medical Records. The Lancet, 395, 809-815.
https://doi.org/10.1016/S0140-6736(20)30360-3
[2]  Rothan, H.A. and Byrareddy, S.N. (2020) The Epidemiology and Pathogenesis of Coronavirus Disease (COVID-19) Outbreak. Journal of Autoimmunity, 109, Article ID: 102433.
https://doi.org/10.1016/j.jaut.2020.102433
[3]  Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y. and Yan, Y. (2020) The Origin, Transmission and Clinical Therapies on Coronavirus Disease 2019 (COVID-19) Outbreak—An Update on the Status. Military Medical Research, 7, Article No. 11.
https://doi.org/10.1186/s40779-020-00240-0
[4]  Tu, Y.-F., Chien, C.-S., Yarmishyn, A.A., Lin, Y.-Y., Luo, Y.-H., Lin, Y.-T., Lai, W.-Y., Yang, D.-M., Chou, S., Yang, Y.-P., et al. (2020) A Review of Sars-cov-2 and the Ongoing Clinical Trials. International Journal of Molecular Sciences, 21, Article No. 2657.
https://doi.org/10.3390/ijms21072657
[5]  Wang, L., Wang, Y., Ye, D. and Liu, Q. (2020) Review of the 2019 Novel Coronavirus (SARS-CoV-2) Based on Current Evidence. International Journal of Antimicrobial Agents, 55, Article ID: 105948.
https://doi.org/10.1016/j.ijantimicag.2020.105948
[6]  World Health Organization (n.d.) Coronavirus Disease (COVID-19) Pandemic.
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[7]  Sharma, O., Sultan, A.A., Ding, H. and Triggle, C.R. (2020) A Review of the Progress and Challenges of Developing a Vaccine for Covid19. Frontiers in Immunology, 11, Article No. 585354.
https://doi.org/10.3389/fimmu.2020.585354
[8]  Voysey, M., Clemens, S.A.C., Madhi, S.A., Weckx, L.Y., Folegatti, P.M., Aley, P.K., Angus, B., Baillie, V.L., Barnabas, S.L., Bhorat, Q.E., et al. (2021) Safety and Efficacy of the Chadox1 Ncov-19 Vaccine (azd1222) Against Sars-cov-2: An Interim Analysis of Four Randomised Controlled Trials in Brazil, South Africa, and the UK. The Lancet, 397, 99-111.
https://doi.org/10.1016/S0140-6736(20)32661-1
[9]  Corbett, K.S., Flynn, B., Foulds, K.E., Francica, J.R., Boyoglu-Barnum, S., Werner, A.P., Flach, B., O’Connell, S., Bock, K.W., Minai, M., et al. (2020) Evaluation of the Mrna-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 383, 1544-1555.
https://doi.org/10.1056/NEJMoa2024671
[10]  Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S.A., Rouphael, N., Buddy Creech, C., et al. (2021) Efficacy and Safety of the Mrna-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 384, 403-416.
https://doi.org/10.1056/NEJMoa2035389
[11]  Anderson, E.J., Rouphael, N.G., Widge, A.T., Jackson, L.A., Roberts, P.C., Makhene, M., Chappell, J.D., Denison, M.R., Stevens, L.J., Pruijssers, A.J., et al. (2020) Safety and Immunogenicity of Sars-cov-2 Mrna-1273 Vaccine in Older Adults. New England Journal of Medicine, 383, 2427-2438.
https://doi.org/10.1056/NEJMoa2028436
[12]  Zhang, Y.-J., Zeng, G., Pan, H.-X., Li, C.-G., Kan, B., Hu, Y.-L., Mao, H.-Y., Xin, Q.-Q., Chu, K., Han, W.-X., et al. (2020) Immunogenicity and Safety of a Sars-cov-2 Inactivated Vaccine in Healthy Adults Aged 18-59 Years: Report of the Randomized, Double-Blind, and Placebo-Controlled Phase 2 Clinical Trial. Medrxiv.
https://doi.org/10.1101/2020.07.31.20161216
[13]  Jones, I. and Roy, P. (2021) Sputnik V COVID-19 Vaccine Candidate Appears Safe and Effective. The Lancet, 397, 642-643.
https://doi.org/10.1016/S0140-6736(21)00191-4
[14]  Burki, T.K. (2020) The Russian Vaccine for COVID-19. The Lancet Respiratory Medicine, 8, e85-e86.
https://doi.org/10.1016/S2213-2600(20)30402-1
[15]  Wu, Y., Xu, X., Chen, Z., Duan, J., Hashimoto, K., Yang, L., Liu, C. and Yang, C. (2020) Nervous System Involvement after Infection With Covid-19 and other Coronaviruses. Brain, Behavior, and Immunity, 87, 18-22.
https://doi.org/10.1016/j.bbi.2020.03.031
[16]  Chhikara, B.S., Rathi, B., Singh, J. and Poonam, F.N.U. (2020) Corona Virus Sars-CoV-2 Disease COVID-19: Infection, Prevention and Clinical Advances of the Prospective Chemical Drug Therapeutics. Chemical Biology Letters, 7, 63-72.
https://doi.org/10.1007/s00058-020-1496-8
[17]  Liang, Y., Wang, M.-L., Chien, C.-S., Yarmishyn, A.A., Yang, Y.-P., Lai, W.-Y., Luo, Y.-H., Lin, Y.-T., Chen, Y.-J., Chang, P.-C., et al. (2020) Highlight of Immune Pathogenic Response and Hematopathologic Effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 Infection. Frontiers in Immunology, 11, Article No. 1022.
https://doi.org/10.3389/fimmu.2020.01022
[18]  Zhang, H., Penninger, J.M., Li, Y., Zhong, N. and Slutsky, A.S. (2020) Angiotensin-Converting Enzyme 2 (ACE2) as a SARS-CoV-2 Receptor: Molecular Mechanisms and Potential Therapeutic Target. Intensive Care Medicine, 46, 586-590.
https://doi.org/10.1007/s00134-020-05985-9
[19]  Li, W., Moore, M.J., Vasilieva, N., Sui, J., Wong, S.K., Berne, M.A., Somasundaran, M., Sullivan, J.L., Luzuriaga, K., Greenough, T.C., et al. (2003) Angiotensin-Converting Enzyme 2 Is a Functional Receptor for the SARS Coronavirus. Nature, 426, 450-454.
https://doi.org/10.1038/nature02145
[20]  Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan, Y., Yang, P., Zhang, Y., Deng, W., et al. (2005) A Crucial Role of Angiotensin Converting Enzyme 2 (ACE2) in SARS Coronavirus-Induced Lung Injury. Nature Medicine, 11, 875-879.
https://doi.org/10.1038/nm1267
[21]  Xiu, S., Dick, A., Ju, H., Mirzaie, S., Abdi, F., Cocklin, S., Zhan, P. and Liu, X. (2020) Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. Journal of Medicinal Chemistry, 63, 12256-12274.
https://doi.org/10.1021/acs.jmedchem.0c00502
[22]  Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y. and Du, L. (2020) Characterization of the Receptor-Binding Domain (RBD) of 2019 Novel Coronavirus: Implication for Development of RBD Protein as a Viral Attachment Inhibitor and Vaccine. Cellular & Molecular Immunology, 17, 613-620.
https://doi.org/10.1038/s41423-020-0400-4
[23]  Spinello, A., Saltalamacchia, A. and Alessandra, M. (2020) Is the Rigidity of SARS-CoV-2 Spike Receptor-Binding Motif the Hallmark for Its Enhanced Infectivity? Insights from All-Atom Simulations. The Journal of Physical Chemistry Letters, 11, 4785-4790.
https://doi.org/10.1021/acs.jpclett.0c01148
[24]  Han, Y. and Král, P. (2020) Computational Design of Ace2-Based Pep-Tide Inhibitors of SARS-CoV-2. ACS Nano, 14, 5143-5147.
https://doi.org/10.1021/acsnano.0c02857
[25]  Singh, A., Steinkellner, G., Köchl, K., Gruber, K. and Gruber, C.C. (2021) Serine 477 Plays a Crucial Role in the Interaction of the SARS-CoV-2 Spike Protein with the Human Receptor ACE2. Scientific Reports, 11, Article No. 4320.
https://doi.org/10.1038/s41598-021-83761-5
[26]  Basu, A., Sarkar, A. and Maulik, U. (2020) Molecular Docking Study of Potential Phytochemicals and Their Effects on the Complex of SARS-CoV2 Spike Protein and Human ACE2. Scientific Reports, 10, Article No. 17699.
https://doi.org/10.1038/s41598-020-74715-4
[27]  Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W. and Cheng, F. (2020) Network-Based Drug Repurposing for Novel Coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6, Article No. 4.
https://doi.org/10.1038/s41421-020-0153-3
[28]  Gordon, D.E., Jang, G.M., Bouhaddou, M., Xu, J., Obernier, K., White, K.M., OMeara, M.J., Rezelj, V.V., Guo, J.Z., Swaney, D.L., et al. (2020) A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing. Nature, 583, 459-468.
https://doi.org/10.1038/s41586-020-2286-9
[29]  Pandey, A., Nikam, A.N., Shreya, A.B., Mutalik, S.P., Gopalan, D., Kulkarni, S., Padya, B.S., Fernandes, G., Mutalik, S. and Prassl, R. (2020) Potential Therapeutic Targets for Combating SARS-CoV-2: Drug Repurposing, Clinical Trials and Recent Advancements. Life Sciences, 256, Article ID: 117883.
https://doi.org/10.1016/j.lfs.2020.117883
[30]  Swain, S.S., Panda, S.K. and Luyten, W. (2020) Phytochemicals against SARS-CoV as Potential Drug Leads. Biomedical Journal, 44, 74-85.
[31]  Panche, A.N., Diwan, A.D. and Chandra, S.R. (2016) Flavonoids: An Overview. Journal of Nutritional Science, 5, Article No. e47.
https://doi.org/10.1017/jns.2016.41
[32]  Harborne, J.B., Marby, H. and Marby, T.J. (2013) The Flavonoids. Springer, Boston.
[33]  Hertog, M.G.L., Hollman, P.C.H. and Katan, M.B. (1992) Content of Potentially Anticarcinogenic Flavonoids of 28 Vegetables and 9 Fruits Commonly Consumed in the Netherlands. Journal of Agricultural and Food Chemistry, 40, 2379-2383.
https://doi.org/10.1021/jf00024a011
[34]  Kumar, S. and Pandey, A.K. (2013) Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal, 2013, Article ID: 162750.
https://doi.org/10.1155/2013/162750
[35]  Sharma, D.K. (2006) Pharmacological Properties of Flavonoids Including Flavonolignans-Integration of Petrocrops with Drug Development from Plants. Journal of Scientific and Industrial Research, 65, 477-484.
[36]  Kim, H.P., Son, K.H., Chang, H.W. and Kang, S.S. (2004) Anti-Inflammatory Plant Flavonoids and Cellular Action Mechanisms. Journal of Pharmacological Sciences, 96, 229-245.
https://doi.org/10.1254/jphs.CRJ04003X
[37]  Cushnie, T.P. and Lamb, A.J. (2005) Antimicrobial Activity of Flavonoids. International Journal of Antimicrobial Agents, 26, 343-356.
https://doi.org/10.1016/j.ijantimicag.2005.09.002
[38]  Lehane, A.M. and Saliba, K.J. (2008) Common Dietary Flavonoids Inhibit the Growth of the Intraerythrocytic Malaria Parasite. BMC Research Notes, 1, Article No. 26. https://doi.org/10.1186/1756-0500-1-26
[39]  Muzitano, M.F., Falcão, C.A.B., Cruz, E.A., Bergonzi, M.C., Bilia, A.R., Vincieri, F.F., Rossi-Bergmann, B. and Costa, S.S. (2009) Oral Metabolism and Efficacy of Kalanchoe Pinnata Flavonoids in a Murine Model of Cutaneous Leishmaniasis. Planta Medica, 75, 307-311.
https://doi.org/10.1055/s-0028-1088382
[40]  Marín, C., Ramírez-Macías, I., López-Céspedes, A., Olmo, F., Villegas, N., Díaz, J.G., Rosales, M.J., Gutiérrez-Sánchez, R. and Sánchez-Moreno, M. (2011) In Vitro and in Vivo Trypanocidal Activity of Flavonoids from Delphinium Staphisagria against Chagas Disease. Journal of Natural Products, 74, 744-750.
https://doi.org/10.1021/np1008043
[41]  Sanchez, I., Gómez-Garibay, F., Taboada, J. and Ruiz, B.H. (2000) Antiviral Effect of Flavonoids on the Dengue Virus. Phytotherapy Research, 14, 89-92.
https://doi.org/10.1002/(SICI)1099-1573(200003)14:2%3C89::AID-PTR569%3E3.0.CO;2-C
[42]  Kiat, T.S., Pippen, R., Yusof, R., Ibrahim, H., Khalid, N., and Abd Rahman, N. (2006) Inhibitory Activity of Cyclohexenyl Chalcone Derivatives and Flavonoids of Fingerroot, Boesenbergia Rotunda (L.), towards Dengue-2 Virus NS3 Protease. Bioorganic & Medicinal Chemistry Letters, 16, 3337-3340.
https://doi.org/10.1016/j.bmcl.2005.12.075
[43]  de Sousa, L.R.F., Wu, H., Nebo, L., Fernandes, J.B., Kiefer, W., Kanitz, M., Bodem, J., Diederich, W.E., Schirmeister, T., Vieira, P.C., et al. (2015) Flavonoids as Noncompetitive Inhibitors of Dengue Virus NS2B-NS3 Pro-Tease: Inhibition Kinetics and Docking Studies. Bioorganic & Medicinal Chemistry, 23, 466-470.
https://doi.org/10.1016/j.bmc.2014.12.015
[44]  Abotaleb, M., Samuel, S.M., Varghese, E., Varghese, S., Kubatka, P., Liskova, A. and Büsselberg, D. (2019) Flavonoids in Cancer and Apoptosis. Cancers, 11, Article No. 28.
https://doi.org/10.3390/cancers11010028
[45]  Wang, H.-K. (2000) The Therapeutic Potential of Flavonoids. Expert Opinion on Investigational Drugs, 9, 2103-2119.
https://doi.org/10.1517/13543784.9.9.2103
[46]  Park, E.-J. and Pezzuto, J.M. (2012) Flavonoids in Cancer Prevention. Anti-Cancer Agents in Medicinal Chemistry, 12, 836-851.
https://doi.org/10.2174/187152012802650075
[47]  Yu, R., Chen, L., Lan, R., Shen, R. and Li, P. (2020) Computational Screening of Antagonists against the SARS-CoV-2 (COVID-19) Coronavirus by Molecular Docking. International Journal of Antimicrobial Agents, 56, Article ID: 106012.
https://doi.org/10.1016/j.ijantimicag.2020.106012
[48]  Muchtaridi, M., Fauzi, M., Ikram, N.K.K., Gazzali, A.M. and Wahab, H.A. (2020) Natural Flavonoids as Potential Angiotensin-Converting Enzyme 2 Inhibitors for Anti-SARS-CoV-2. Molecules, 25, Article No. 3980.
https://doi.org/10.3390/molecules25173980
[49]  Ngwa, W., Kumar, R., Thompson, D., Lyerly, W., Moore, R., Reid, T.-E., Lowe, H. and Toyang, N. (2020) Potential of Flavonoid-Inspired Phytomedicines against Covid-19. Molecules, 25, Article No. 2707.
https://doi.org/10.3390/molecules25112707
[50]  Pandey, P., Rane, J.S., Chatterjee, A., Kumar, A., Khan, R., Prakash, A. and Ray, S. (2020) Targeting SARS-cov-2 Spike Protein of Covid-19 with Naturally Occurring Phytochemicals: An in Silico Study for Drug Development. Journal of Biomolecular Structure and Dynamics.
https://doi.org/10.1080/07391102.2020.1862705
[51]  Dolzhenko, Y., Bertea, C.M., Occhipinti, A., Bossi, S. and Maffei, M.E. (2010) UV-B Modulates the Interplay between Terpenoids and Flavonoids in Peppermint (Menthe × Piperita L.). Journal of Photochemistry and Photobiology B: Biology, 100, 67-75.
https://doi.org/10.1016/j.jphotobiol.2010.05.003
[52]  McKay, D.L. and Blumberg, J.B. (2006) A Review of the Bioactivity and Potential Health Benefits of Chamomile Tea (Matricaria recutita L.). Phytotherapy Research, 20, 519-530.
https://doi.org/10.1002/ptr.1900
[53]  Bodalska, A., Kowalczyk, A., Wlodarczyk, M. and Fecka, I. (2020) Analysis of Polyphenolic Composition of a Herbal Medicinal Product Peppermint Tincture. Molecules, 25, Article No. 69.
https://doi.org/10.3390/molecules25010069
[54]  Areias, F.M., Valentao, P., Andrade, P.B., Ferreres, F. and Seabra, R.M. (2001) Phenolic Fingerprint of Peppermint Leaves. Food Chemistry, 73, 307-311.
https://doi.org/10.1016/S0308-8146(00)00302-2
[55]  Riachi, L.G. and De Maria, C.A.B. (2015) Peppermint Antioxidants Revisited. Food Chemistry, 176, 72-81.
https://doi.org/10.1016/j.foodchem.2014.12.028
[56]  Mahendran, G. and Rahman, L.-U. (2020) Ethnomedicinal, Phytochemical and Pharmacological Updates on Peppermint (mentha× Piperita L.): A Review. Phytotherapy Research, 34, 2088-2139.
https://doi.org/10.1002/ptr.6664
[57]  Peterson, J. and Dwyer, J. (1998) Flavonoids: Dietary Occurrence and Biochemical Activity. Nutrition Research, 18, 1995-2018.
https://doi.org/10.1016/S0271-5317(98)00169-9
[58]  de Oliveira, O.V., Rocha, G.B., Paluch, A.S. and Costa, L.T. (2020) Repurposing Approved Drugs As Inhibitors of SARS-CoV-2 S-Protein From Molecular Modeling and Virtual Screening. Journal of Biomolecular Structure and Dynamics, 39, 2924-2933.
https://doi.org/10.1080/07391102.2020.1772885
[59]  Muhseen, Z.T., Hameed, A.R., Al-Hasani, H.M.H., Ul Qamar, M.T. and Li, G. (2020) Promising Terpenes as SARS-CoV-2 Spike Receptor-Binding Domain (RBD) Attachment Inhibitors to the Human ACE2 Receptor: Integrated Computational Approach. Journal of Molecular Liquids, 320, Article ID: 114493.
https://doi.org/10.1016/j.molliq.2020.114493
[60]  Hu, X., Cai, X., Song, X., Li, C., Zhao, J., Luo, W., Zhang, Q., Otte Ekumi, I. and He, Z. (2020) Possible Sarscoronavirus 2 Inhibitor Revealed by Simulated Molecular Docking to Viral Main Protease and Host Toll-Like Receptor. Future Virology, 15, 359-368.
https://doi.org/10.2217/fvl-2020-0099
[61]  Istifli, E.S., Netz, P.A., Tepe, A.S., Husunet, M.T., Sarikurkcu, C. and Tepe, B. (2020) In Silico Analysis of the Interactions of Certain Flavonoids with the Receptor-Binding Domain of 2019 Novel Coronavirus and Cellular Proteases and Their Pharmacokinetic Properties. Journal of Biomolecular Structure and Dynamics, 40, 2460-2474.
https://doi.org/10.1080/07391102.2020.1840444
[62]  Peterson, L. (2020) Covid-19 and Flavonoids: In Silico Molecular Dynamics Docking to the Active Catalytic Site of SARS-CoV and SARS-CoV-2 Main Protease. Social Science Research Network, Article ID: 3599426.
https://doi.org/10.2139/ssrn.3599426
[63]  Das, S., Sarmah, S., Lyndem, S. and Roy, A.S. (2020) An Investigation into the Identification of Potential Inhibitors of Sars-cov-2 Main Protease Using Molecular Docking Study. Journal of Biomolecular Structure and Dynamics, 39, 3347-3357.
https://doi.org/10.1080/07391102.2020.1763201
[64]  Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I. and Russo, G.L. (2020) Roles of Flavonoids against Coronavirus Infection. Chemico-Biological Interactions, 328, Article ID: 109211.
https://doi.org/10.1016/j.cbi.2020.109211
[65]  Bojadzic, D., Alcazar, O., Chen, J. and Buchwald, P. (2020) Small-Molecule in Vitro Inhibitors of the Coronavirus Spike-ACE2 Protein-Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV-2. ACS Infectious Diseases, 7, 1519-1534.
https://doi.org/10.1021/acsinfecdis.1c00070
[66]  Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., et al. (2020) Structure of the Sars-cov-2 Spike Receptor-Binding Domain Bound to the Ace2 Receptor. Nature, 581, 215-220.
https://doi.org/10.1038/s41586-020-2180-5
[67]  National Library of Medicine—Pubchem.
https://pubchem.ncbi.nlm.nih.gov/
[68]  Grosdidier, A., Zoete, V. and Michielin, O. (2011) Fast Docking Using the Charmm Force Field with EADock DSS. Journal of Computational Chemistry, 32, 2149-2159.
https://doi.org/10.1002/jcc.21797
[69]  Grosdidier, A., Zoete, V. and Michielin, O. (2011) Swissdock, A Protein-Small Molecule Docking Web Service Based on EADock DSS. Nucleic Acids Research, 39, W270-W277.
https://doi.org/10.1093/nar/gkr366
[70]  Cheng, B. and Li, T. (2020) Discovery of Alliin as a Putative Inhibitor of the Main Protease of SARS-CoV-2 by Molecular Docking. BioTechniques, 69, 108-112.
https://doi.org/10.2144/btn-2020-0038
[71]  Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. and Ferrin, T.E. (2004) UCSF Chimera—A Visualization System for Exploratory Research and Analysis. Journal of Computational Chemistry, 25, 1605-1612.
https://doi.org/10.1002/jcc.20084
[72]  Salentin, S., Schreiber, S., Joachim Haupt, V., Adasme, M.F. and Schroeder, M. (2015) PLIP: Fully Automated Protein-Ligand Interaction Profiler. Nucleic Acids Research, 43, W443-W447.
https://doi.org/10.1093/nar/gkv315
[73]  Luan, B., Huynh, T., Cheng, X., Lan, G. and Wang, H.-R. (2020) Targeting Proteases for Treating Covid-19. Journal of Proteome Research, 19, 4316-4326.
https://doi.org/10.1021/acs.jproteome.0c00430
[74]  Alexpandi, R., De Mesquita, J.F., Pandian, S.K. and Ravi, A.V. (2020) Quinolines-based Sars-cov2 3clpro and Rdrp Inhibitors and Spike-rbd-ace2 Inhibitor for Drugrepurposing Against Covid-19: An in Silico Analysis. Frontiers in Microbiology, 11, Article No. 1796.
https://doi.org/10.3389/fmicb.2020.01796
[75]  Choudhary, S., Malik, Y.S. and Tomar, S. (2020) Identification of Sars-cov-2 Cell Entry Inhibitors by Drug Repurposing Using in Silico Structure-Based Virtual Screening Approach. Frontiers in Immunology, 11, Article No. 1664.
https://doi.org/10.3389/fimmu.2020.01664
[76]  Trezza, A., Iovinelli, D., Santucci, A., Prischi, F. and Spiga, O. (2020) An Integrated Drug Repurposing Strategy for the Rapid Identification of Potential SARS-CoV-2 Viral Inhibitors. Scientific Reports, 10, Article No. 13866.
https://doi.org/10.1038/s41598-020-70863-9
[77]  Wei, T.-Z., Wang, H., Wu, X.-Q., Lu, Y., Guan, S.-H., Dong, F.-Q., Zhu, G., Bao, Y.-Z., Zhang, J., Wang, G.-Y., et al. (2020) In Silico Screening of Potential Spike Glycoprotein Inhibitors of SARS-CoV-2 with Drug Repurposing Strategy. Chinese Journal of Integrative Medicine, 26, 663-669.
https://doi.org/10.1007/s11655-020-3427-6
[78]  Panda, P.K., Arul, M.N., Patel, P., Verma, S.K., Luo, W., Rubahn, H.-G., Mishra, Y.K., Suar, M. and Ahuja, R. (2020) Structure-Based Drug Designing and Immunoinformatics Approach for SARS-CoV-2. Science Advances, 6, Article ID: eabb8097.
https://doi.org/10.1126/sciadv.abb8097
[79]  Utomo, R.Y., Meiyanto, E. and Meiyanto, E. (2020) Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection. Preprints, 2020, Article ID: 2020030214.
https://doi.org/10.1126/sciadv.abb8097
[80]  Cherrak, S.A., Merzouk, H. and Mokhtari-Soulimane, N. (2020) Potential Bioactive Glycosylated Flavonoids as SARS-CoV-2 Main Protease Inhibitors: A Molecular Docking and Simulation Studies. PLoS ONE, 15, Article ID: e0240653.
https://doi.org/10.1371/journal.pone.0240653
[81]  Bhowmik, D., Nandi, R., Prakash, A. and Kumar, D. (2021) Evaluation of Flavonoids as 2019-nCoV Cell Entry Inhibitor through Molecular Docking and Pharmacological Analysis. Heliyon, 7, Article ID: e06515.
https://doi.org/10.1016/j.heliyon.2021.e06515
[82]  Lal Badshah, S., Faisal, S., Akhtar, M., Benjamin Gabriel, P., Abdul Hamid, E. and Mariusz, J. (2021) Antiviral Activities of Flavonoids. Biomedicine & Pharmacotherapy, 140, Article ID: 111596.
https://doi.org/10.1016/j.biopha.2021.111596
[83]  Abian, O., Ortega-Alarcon, D., Jimenez-Alesanco, A., Ceballos-Laita, L., Vega, S., Reyburn, H.T., Rizzuti, B. and Velazquez-Campoy, A. (2020) Structural Stability of Sars-CoV-2 3CLpro and Identification of Quercetin as an Inhibitor by Experimental Screening. International Journal of Biological Macromolecules, 164, 1693-1703.
https://doi.org/10.1016/j.ijbiomac.2020.07.235
[84]  Liskova, A., Samec, M., Koklesova, L., Samuel, S.M., Zhai, K., Al-Ishaq, R.K., Abotaleb, M., Nosal, V., Kajo, K., Ashrafizadeh, M., et al. (2021) Flavonoids against the Sars-cov-2 Induced Inflammatory Storm. Biomedicine & Pharmacotherapy, 138, Article ID: 111430.
https://doi.org/10.1016/j.biopha.2021.111430
[85]  Seadawy, M.G., Gad, A.F., Shamel, M., Elharty, B., Mohamed, M.F., Elfiky, A.A., Ahmed, A. and Zekri, A.R.N. (2021) In Vitro-Natural Compounds (Thymol, Carvacrol, Hesperidine, and Thymoquinone) against SARS-CoV-2 Strain Isolated from Egypt. Biomedical Journal of Scientific & Technical Research, 34, 26750-26757.
https://doi.org/10.26717/BJSTR.2021.34.005552
[86]  Solnier, J. and Fladerer, J.-P. (2020) Flavonoids: A Complementary Approach to Conventional Therapy of COVID-19? Phytochemistry Reviews, 20, 773-795.
https://doi.org/10.1007/s11101-020-09720-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133