全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器学习的新型冠状肺炎的舆情分析
Public Opinion Analysis of Novel Coronavirus Pneumonia Based on Machine Learning

DOI: 10.12677/HJDM.2022.122013, PP. 114-122

Keywords: GSDMM,主题模型,新冠疫情,聚类算法
GSDMM
, Topic Model, New Crown Epidemic, Clustering Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

新冠疫情的爆发和肆虐引起群众关注,互联网上的相关话题不断攀升。如何利用计算机方法和数据分析算法准确地识别热点新闻和疫情主题,挖掘民众关注的话题,分析舆论走势,显得至关重要。本文提出一种基于GSDMM主题挖掘的“新冠肺炎疫情”舆情分析方法,利用数据预处理、特征提取、词云可视化技术挖掘目标数据的热点主题,再采用GSDMM主题模型、聚类分析对目标数据进行分析挖掘。通过深入进行了面向人民网的GSDMM短文本聚类算法研究,得到大家都一直十分关心中国和世界的疫情形势和经济形势的信息。此次肺炎疫情热点主题包括疫情、防控、工作、肺炎、患者等。
The outbreak and ravages of the new crown epidemic have aroused the attention of the masses, and related topics on the Internet have continued to rise. How to use computer methods and data analy-sis algorithms to accurately identify hot news and epidemic topics, dig out topics of public concern, and analyze the trend of public opinion is of great importance. In this paper, a “new crown pneumo-nia epidemic” public opinion analysis method based on GSDMM theme mining is proposed, which uses data preprocessing, feature extraction, and word cloud visualization technology to mine the hot topics of target data, and then uses GSDMM theme model and cluster analysis to analyze and mine target data. Through the in-depth research of the GSDMM short text clustering algorithm for the People’s Network, we have obtained information that everyone has always been very concerned about the epidemic situation and economic situation in China and the world. The hot topics of the pneumonia epidemic include epidemic situation, prevention and control, work, pneumonia, patients, etc.

References

[1]  杨秀璋, 武帅, 夏换, 于小民. 基于主题挖掘和情感分析的“新冠肺炎疫情”舆情分析研究[J]. 计算机时代, 2020(8): 31-36.
https://doi.org/10.16644/j.cnki.cn33-1094/tp.2020.08.008
[2]  刘惠, 赵海清. 基于TF-IDF和LDA主题模型的电影短评文本情感分析——以《少年的你》为例[J]. 现代电影技术, 2020(3): 42-46.
[3]  杨雪寒, 焦玮, 张倩, 孟洁. 面向医院网络舆情分析的情感文本挖掘[J]. 微型电脑应用, 2020, 36(12): 31-34.
[4]  彭浩, 周杰, 周豪, 赵丹丹. 微博网络中基于主题发现的舆情分析[J]. 电讯技术, 2015, 55(6): 611-617.
[5]  岳宗朴, 刘彩, 李莹, 陆文静. 基于微博数据挖掘的“新冠疫情”评论文本分析[J]. 品位经典, 2020(12): 48-50.
[6]  黄勃, 陈欢, 方志军, 王明胜, 刘文竹. 基于微博的COVID-19热点话题分析[J]. 武汉大学学报(理学版), 2020, 66(5): 425-432.
https://doi.org/10.14188/j.1671-8836.2020.0045
[7]  李丽. 基于改进GSDMM聚类模型的机器人文献主题划分研究[D]. 武汉: 华中科技大学, 2017.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133