|
羟基(对甲苯磺酰氧基)碘苯的制备与应用
|
Abstract:
羟基(对甲苯磺酰氧基)碘苯作为一种安全、有效、污染小的高价碘化合物,近年广泛应用于有机化学与药物化学的研究中。本课题组一直从事高价碘氧化剂的制备与应用研究,其中对高价碘化合物中的亚碘酰苯、二酰氧碘苯、羟基(对甲苯磺酰氧)碘苯做了大量的研究工作。本文结合自己课题组的研究成果综述了羟基(对甲苯磺酰氧基)碘苯以及衍生物的制备方法与实际应用。
Hydroxy(sulfonyloxy)iodoarenes, as a safe, effective and low-polluting hypervalent iodine compounds, have been widely used in the research of organic chemistry and medicinal chemistry in recent years. Our research group has been engaged in the preparation and application of hypervalent iodine compounds. In particular, we have done a lot of research on iodosylbenzene, bisacyloxyiodobenzenes and hydroxy(sulfonyloxy)iodoarenes in hypervalent iodine compounds. In this paper, the preparation methods and practical applications of hydroxy (p-toluenesulfonyloxy) iodobenzene and derivatives are reviewed based on the research results of our group.
[1] | Wolf, W., Chen, J.C. and Hsu, L.L. (1966) Chemistry and Biochem-istry of Polyvalent Iodine Compounds. V. Ionization of Heterocyclic Polyvalent Iodine Compounds. Journal of Phar-maceutical Sciences, 55, 68-72.
https://doi.org/10.1002/jps.2600550115 |
[2] | Pan, L., Ke, Z. and Yeung, Y.Y. (2021) Lewis Base Catalyzed Diox-ygenation of Olefins with Hypervalent Iodine Reagents. Organic Letters, 23, 8174-8178. https://doi.org/10.1021/acs.orglett.1c02872 |
[3] | Xiao, X. and Wengryniuk, S.E. (2021) Recent Advances in the Selective Oxidative Dearomatization of Phenols to O-Quinones and O-Quinols with Hypervalent Iodine Reagents. Synlett, 32, 752-762.
https://doi.org/10.1055/s-0037-1610760 |
[4] | Kumar, R., Singh, F.V., Takenaga, N. and Dohi, T. (2022) Asym-metric Direct/Stepwise Dearomatization Reactions Involving Hypervalent Iodine Reagents. Chemistry, 17, e202101115. https://doi.org/10.1002/asia.202101115 |
[5] | Suzuki, Y., Takehara, R., Miura, K., Ito, R. and Suzuki, N. (2021) Regioselective Synthesis of Trisubstituted Quinoxalines Mediated by Hypervalent Iodine Reagents. The Journal of Or-ganic Chemistry, 86, 16892-16900.
https://doi.org/10.1021/acs.joc.1c02087 |
[6] | Declas, N. and Waser, J. (2020) Access to Vinyl Ethers and Ketones with Hypervalent Iodine Reagents as Oxy-Allyl Cation Synthetic Equivalents. Angewandte Chemie International Edition, 59, 18256-18260.
https://doi.org/10.1002/anie.202006707 |
[7] | Bryant, M.R. and Richardson, C. (2020) Hypervalent Organoiodine(v) Metal-Organic Frameworks: Syntheses, Thermal Studies and Stoichiometric Oxidants. Dalton Transactions, 49, 5167-5174. https://doi.org/10.1039/D0DT00870B |
[8] | Wang, C., Ma, D., Tu, Y. and Bolm, C. (2020) Use of Hypervalent Iodine Reagents in Visible Light-Promoted Alpha-Ketoacylations of Sulfoximines with Aryl Alkynes. Or-ganic Letters, 22, 8937-8940.
https://doi.org/10.1021/acs.orglett.0c03338 |
[9] | Elsherbini, M., Winterson, B., Alharbi, H., Folgueiras-Amador, A.A., Génot, C. and Wirth, T. (2019) Continuous-Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications. Angewandte Chemie International Edition, 58, 9811-9815. https://doi.org/10.1002/anie.201904379 |
[10] | Hari, D.P., Caramenti, P. and Waser, J. (2018) Cyclic Hypervalent Io-dine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung. Accounts of Chemical Research, 51, 3212-3225.
https://doi.org/10.1021/acs.accounts.8b00468 |
[11] | Ghosh, S., Pradhan, S. and Chatterjee, I. (2018) A Survey of Chiral Hypervalent Iodine Reagents in Asymmetric Synthesis. Beilstein Journal of Organic Chemistry, 14, 1244-1262. https://doi.org/10.3762/bjoc.14.107 |
[12] | Elsherbini, M. and Wirth, T. (2018) Hypervalent Iodine Reagents by An-odic Oxidation: A Powerful Green Synthesis. Chemistry, 24, 13399-13407. https://doi.org/10.1002/chem.201801232 |
[13] | Sousa, E.S.F., Tierno, A.F. and Wengryniuk, S.E. (2017) Hyperva-lent Iodine Reagents in High Valent Transition Metal Chemistry. Molecules, 22, Article No. 780. https://doi.org/10.3390/molecules22050780 |
[14] | Protasiewicz, J.D. (2016) Organoiodine(III) Reagents as Active Participants and Ligands in Transition Metal-Catalyzed Reactions: Iodosylarenes and (Imino)iodoarenes. In: Wirth, T., Ed., Hypervalent Iodine Chemistry, Vol. 373, Springer, Cham, 263-288. https://doi.org/10.1007/128_2015_664 |
[15] | Zhdankin, V.V. (2011) Organoiodine(V) Reagents in Organic Synthe-sis. The Journal of Organic Chemistry, 76, 1185-1197.
https://doi.org/10.1021/jo1024738 |
[16] | Stang, P.J. (2003) Polyvalent Iodine in Organic Chemistry. The Journal of Organic Chemistry, 68, 2997-3008.
https://doi.org/10.1021/jo030022e |
[17] | Stang, P.J. and Zhdankin, V.V. (1996) Organic Polyvalent Iodine Com-pounds. Chemical Reviews, 96, 1123-1178.
https://doi.org/10.1021/cr940424+ |
[18] | Dahiya, A., Kumar Sahoo, A., Chakraborty, N., Das, B. and Patel, B.K. (2022) Updates on Hypervalent-Iodine Reagents: Metal-Free Functionalisation of Alkenes, Alkynes and Heterocycles. Organic & Biomolecular Chemistry, 20, 2005-2007. https://doi.org/10.1039/D1OB02233D |
[19] | Koser, G.F., Wettach, R.H., Troup, J.M. and Frenz, B.A. (1976) Hypervalent Organoiodine. Crystal Structure of Phe-nylhydroxytosyloxyiodine. Journal of Organic Chemistry, 41, 3609-3611. https://doi.org/10.1021/jo00884a028 |
[20] | Le Du, E., Duhail, T., Wodrich, M.D., Scopelliti, R., Fadaei-Tirani, F., Anselmi, E., et al. (2021) Structure and Reactivity of N-Heterocyclic Alkynyl Hypervalent Iodine Reagents. Chemistry, 27, 10979-10986.
https://doi.org/10.1002/chem.202101475 |
[21] | Alharbi, H., Elsherbini, M., Qurban, J. and Wirth, T. (2021) C-N Axial Chiral Hypervalent Iodine Reagents: Catalytic Stereoselective Alpha-Oxytosylation of Ketones. Chemistry, 27, 4317-4321. https://doi.org/10.1002/chem.202005253 |
[22] | Lakshman, M.K. and Zajc, B. (2018) When Nucleoside Chemistry Met Hypervalent Iodine Reagents. ARKIVOC, 2018, 252-279. https://doi.org/10.24820/ark.5550190.p010.281 |
[23] | Grelier, G., Darses, B. and Dauban, P. (2018) Hypervalent Organoiodine Compounds: From Reagents to Valuable Building Blocks in Synthesis. Beilstein Journal of Organic Chemistry, 14, 1508-1528.
https://doi.org/10.3762/bjoc.14.128 |
[24] | Singh, F.V., Kole, P.B., Mangaonkar, S.R. and Shetgaonkar, S.E. (2018) Synthesis of Spirocyclic Scaffolds Using Hypervalent Iodine Reagents. Beilstein Journal of Organic Chemistry, 14, 1778-1805.
https://doi.org/10.3762/bjoc.14.152 |
[25] | Zhdankin, V.V. and Stang, P.J. (2002) Recent Developments in the Chemistry of Polyvalent Iodine Compounds. Chemical Reviews, 102, 2523-2584. https://doi.org/10.1021/cr010003+ |
[26] | Wang, F., Yu, X., Qi, Z. and Li, X. (2016) Rhodium-Catalyzed C-S and C-N Functionalization of Arenes: Combination of C-H Activation and Hypervalent Iodine Chemistry. Chemistry, 22, 511-516.
https://doi.org/10.1002/chem.201504179 |
[27] | Dohi, T., Han, J.W. and Kumar, R. (2021) Editorial: New Hyperva-lent Iodine Reagents for Oxidative Coupling. Frontiers in Chemistry, 9, Article ID: 642889. https://doi.org/10.3389/fchem.2021.642889 |
[28] | Sun, T.Y., Chen, K., Zhou, H., You, T., Yin, P. and Wang, X. (2021) Revisiting the Effect of f-Functions in Predicting the Right Reaction Mechanism for Hypervalent Iodine Reagents. Journal of Computational Chemistry, 42, 470-474.
https://doi.org/10.1002/jcc.26469 |
[29] | Uyanik, M., Yasui, T. and Ishihara, K. (2017) Chiral Hypervalent Organ-oiodine-Catalyzed Enantioselective Oxidative Spirolactonization of Naphthol Derivatives. The Journal of Organic Chem-istry, 82, 11946-11953.
https://doi.org/10.1021/acs.joc.7b01941 |
[30] | Hokamp, T. and Wirth, T. (2019) Structurally Defined Al-pha-Tetralol-Based Chiral Hypervalent Iodine Reagents. The Journal of Organic Chemistry, 84, 8674-8682. https://doi.org/10.1021/acs.joc.9b01315 |
[31] | Lee, J.H., Choi, S. and Hong, K.B. (2019) Alkene Difunctionalization Using Hypervalent Iodine Reagents: Progress and Developments in the Past Ten Years. Molecules, 24, Article No. 2634. https://doi.org/10.3390/molecules24142634 |
[32] | Dasgupta, A., Thiehoff, C., Newman, P.D., Wirth, T. and Melen, R.L. (2021) Reactions Promoted by Hypervalent Iodine Reagents and Boron Lewis Acids. Organic & Biomolecular Chemistry, 19, 4852-4865.
https://doi.org/10.1039/D1OB00740H |
[33] | Klimankova, I., Hubálek, M., Matou?ek, V. and Beier, P. (2019) Syn-thesis of Water-Soluble Hypervalent Iodine Reagents for Fluoroalkylation of Biological Thiols. Organic & Biomolecular Chemistry, 17, 10097-10102.
https://doi.org/10.1039/C9OB02115A |
[34] | Liang, H., Zhu, G., Pu, X. and Qiu, L. (2021) Copper-Catalyzed Enan-tioselective C-H Arylation between 2-Arylindoles and Hypervalent Iodine Reagents. Organic Letters, 23, 9246-9250. https://doi.org/10.1021/acs.orglett.1c03596 |
[35] | Wu, S., Li, J., He, R., Jia, K. and Chen, Y. (2021) Terminal Tri-fluoromethylation of Ketones via Selective C-C Cleavage of Cycloalkanols Enabled by Hypervalent Iodine Reagents. Organic Letters, 23, 9204-9209.
https://doi.org/10.1021/acs.orglett.1c03526 |
[36] | Sun, T.Y., Chen, K., Lin, Q., You, T. and Yin, P. (2021) Predict-ing the Right Mechanism for Hypervalent Iodine Reagents by Applying Two Types of Hypervalent Twist Models: Api-cal Twist and Equatorial Twist. Physical Chemistry Chemical Physics, 23, 6758-6762. https://doi.org/10.1039/D0CP06692C |
[37] | Merritt, E.A., Carneiro, V.M., Silva Jr., L.F. and Olofsson, B. (2010) Facile Synthesis of Koser’s Reagent and Derivatives from Iodine or Aryl Iodides. The Journal of Organic Chemistry, 75, 7416-7419.
https://doi.org/10.1021/jo101227j |
[38] | Richter, H.W., Paul, N.M., Ray, D.G., Ray, C.A., Liable-Sands, L.M., Concolino, T., et al. (2010) Anhydrides of Real and Hypothetical [Hydroxy(R-O)iodo]benzenes. Inorganic Chemistry, 49, 5413-5423.
https://doi.org/10.1021/ic1007318 |
[39] | Justik, M.W. and Koser, G.F. (2005) Application of [Hy-droxy(tosyloxy)iodo]benzene in the Wittig-Ring Expansion Sequence for the Synthesis of Beta-Benzocyclo-Alkenones from Alpha-Benzocycloalkenones. Molecules, 10, 217-225.
https://doi.org/10.3390/10010217 |
[40] | Richter, H.W., Koser, G.F., Incarvito, C.D. and Rheingold, A.L. (2007) Preparation and Structure of a Solid-State Hypervalent-Iodine Polymer Containing Iodine and Oxygen Atoms in Fused 12-Atom Hexagonal Rings. Inorganic Chemistry, 46, 5555-5561. https://doi.org/10.1021/ic0701716 |
[41] | Zagulyaeva, A.A., Yusubov, M.S. and Zhdankin, V.V. (2010) A General and Convenient Preparation of [Bis(trifle- oroacetoxy)iodo]perfluoroalkanes and [Bis(trifluoroacetoxy)iodo]arenes by Oxidation of Organic Iodides Using Oxone and Trifluoroacetic Acid. The Journal of Organic Chemistry, 75, 2119-2122. https://doi.org/10.1021/jo902733f |
[42] | Malamidou-Xenikaki, E., Spyroudis, S., Tsanakopoulou, M. and Hadjipav-lou-Litina, D. (2009) A Convenient Approach to Fused Indeno-1,4-Diazepinones through Hypervalent Iodine Chemistry. The Journal of Organic Chemistry, 74, 7315-7321. https://doi.org/10.1021/jo9013063 |
[43] | Yusubov, M.S., Funk, T.V., Chi, K.W., Cha, E.H., Kim, G.H., Kirschning, A., et al. (2008) Preparation and X-Ray Structures of 3-[Bis(trifluoroacetoxy)iodo]benzoic Acid and 3-[Hydroxy(tosyloxy)iodo]benzoic Acid: New Recyclable Hypervalent Iodine Reagents. The Journal of Organic Chemistry, 73, 295-297. https://doi.org/10.1021/jo702112s |
[44] | Kumar, A., Ahmad, P., Akanksha and Murya, R.A. (2005) Cleavage of Oximes Using a Solid Supported Hypervalent Organ-oiodine Reagent. Combinatorial Chemistry & High Throughput Screening, 8, 445-447.
https://doi.org/10.2174/1386207054546522 |
[45] | Katritzky, A.R., Gallos, J.K. and Durst, H.D. (1989) Structure of and Electronic Interactions in Aromatic Polyvalent Iodine Compounds: A (13) C NMR Study. Magnetic Resonance in Chemistry, 27, 815-822.
https://doi.org/10.1002/mrc.1260270902 |
[46] | Wilkinson Richter, H., Cherry, B.R., Zook, T.D. and Koser, G.F. (1997) Characterization of Species Present in Aqueous Solutions of [Hydroxy(mesyloxy)iodo]benzene and [Hy-droxy(tosyloxy)iodo]benzene. Journal of the American Chemical Society, 119, 9614-9623. https://doi.org/10.1021/ja971751c |
[47] | Fra, L., Millán, A., Souto, J.A. and Mu?iz, K. (2014) Indole Synthesis Based on a Modified Koser Reagent. Angewandte Chemie International Edition, 53, 7349-7353. https://doi.org/10.1002/anie.201402661 |
[48] | Rao, G.W., Wang, C., Wang, J., Zhao, Z.-G. and Hu, W.-X. (2013) Synthesis, Structure Analysis, Antitumor Evaluation and 3D-QSAR Studies of 3,6-Disubstituted-Dihydro-1,2,4,5-Tetrazine Derivatives. Bioorganic & Medicinal Chemistry Letters, 23, 6474-6480. https://doi.org/10.1016/j.bmcl.2013.09.036 |
[49] | Rao, G.W. and Hu, W.X. (2003) Dipropyl 3,6-Diphenyl-1,2-Dihydro-1,2,4,5-Tetrazine-1,2-Dicarboxylate. Acta Crystallogr C, 59, o281-o282. https://doi.org/10.1107/S0108270103007212 |
[50] | Rao, G.W. and Hu, W.X. (2005) Synthesis, X-Ray Crystallo-graphic Analysis, and Antitumor Activity of 1-Acyl- 3,6-Disubstituted Phenyl-1,4-Dihydro-1,2,4,5-Tetrazines. Bioor-ganic & Medicinal Chemistry Letters, 15, 3174-3176.
https://doi.org/10.1016/j.bmcl.2005.03.122 |
[51] | Rao, G.W., Guo, Y.M. and Hu, W.X. (2012) Synthesis, Structure Analysis, and Antitumor Evaluation of 3,6-Dimethyl- 1,2,4,5-Tetrazine-1,4-Dicarboxamide Derivatives. ChemMedChem, 7, 973-976.
https://doi.org/10.1002/cmdc.201200109 |
[52] | Adamira, M., Justik, P., Ulman, J., Brezina, A., Mirejovsky, T. and Trnkova, M. (2011) Two Sporadic Infected Cardiac Myxomas in 1 Patient. Texas Heart Institute Journal, 38, 191-193. |
[53] | Silva, L.J., Vasconcelos, R.S. and Nogueira, M.A. (2008) Iodine(III)-Promoted Ring Expansion of 1-Vinylcycloalkanol Derivatives: A Metal-Free Approach toward Seven-Membered Rings. Organic Letters, 10, 1017-1020.
https://doi.org/10.1021/ol800048f |
[54] | Kita, Y., Morimoto, K., Ito, M., Ogawa, C., Goto, A. and Dohi, T. (2009) Metal-Free Oxidative Cross-Coupling of Unfunctionalized Aromatic Compounds. Journal of the American Chemical So-ciety, 131, 1668-1669.
https://doi.org/10.1021/ja808940n |
[55] | Zhu, C., Xu, D. and Wei, Y. (2011) A New Synthetic Protocol for the Preparation of Carbodiimides Using a Hypervalent Iodine(III) Reagent. Synthesis, No. 5, 711-714. https://doi.org/10.1055/s-0030-1258414 |
[56] | Wirth, T. (2005) Hypervalent Iodine Chemistry in Synthesis: Scope and New Directions. Angewandte Chemie International Edition, 44, 3656-3665. https://doi.org/10.1002/anie.200500115 |
[57] | Li, Y., Hari, D.P., Vita, M.V. and Waser, J. (2016) Cyclic Hyperva-lent Iodine Reagents for Atom-Transfer Reactions: Beyond Trifluoromethylation. Angewandte Chemie International Edi-tion, 55, 4436-4454.
https://doi.org/10.1002/anie.201509073 |
[58] | Ceballos, J., Grinhagena, E., Sangouard, G., Heinis, C. and Waser, J. (2021) Cys-Cys and Cys-Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents. Angewandte Chemie International Edition, 60, 9022-9031.
https://doi.org/10.1002/anie.202014511 |
[59] | Zhdankin, V.V. and Stang, P.J. (2008) Chemistry of Polyvalent Io-dine. Chemical Reviews, 108, 5299-5358.
https://doi.org/10.1021/cr800332c |
[60] | Zhang, H. and Wirth, T. (2022) Oxidation of BINOLs by Hypervalent Io-dine Reagents: Facile Synthesis of Xanthenes and Lactones. Chemistry, e202200181. https://doi.org/10.1002/chem.202200181 |
[61] | Shetgaonkar, S.E. and Singh, F.V. (2020) Hypervalent Iodine Rea-gents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions. Frontiers in Chemistry, 8, Article No. 705. https://doi.org/10.3389/fchem.2020.00705 |
[62] | Wolf, W., Weiner, A. and Weisberg, R. (1965) Chemistry and Bi-ochemistry of Polyvalent Iodine Compounds. 3. Acute Toxicity of 1,3-Dihydro-1-Hydroxy-3-Oxo-1,2-Benziodoxole. Journal of Pharmaceutical Sciences, 54, 329-330.
https://doi.org/10.1002/jps.2600540244 |
[63] | Xu, B., Gao, Y., Han, J., Xing, Z., Zhao, S., Zhang, Z., et al. (2019) Hypervalent Iodine(III)-Mediated Tosyloxylation of 4-Hydroxycoumarins. The Journal of Organic Chemistry, 84, 10136-10144. https://doi.org/10.1021/acs.joc.9b01323 |
[64] | Eisenmann, A. and Wolf, W. (1968) Chemistry and Biochemistry of Polyvalent Iodine Compounds. VII. The ARP (Apparent Reduction Potential) of 1,3-Dihydro-1-Hydroxo-3-Oxo-1,2-Benziodoxole. Journal of Pharmaceutical Sciences, 57, 1435-1437. https://doi.org/10.1002/jps.2600570837 |