全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

砾岩层控制覆岩和地表移动机理分析
Analysis of the Mechanism of Conglomerate Layer Controlling Overlying Strata and Surface Movement

DOI: 10.12677/ME.2022.102013, PP. 103-113

Keywords: 砾岩层,关键层,地表移动,数值模拟,条带开采
Conglomerate Layer
, Key Layer, Surface Movement, Numerical Simulation, Strip Mining

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对砾岩层下3煤开采地表移动与变形值偏小的机理问题,运用关键层理论确定了山东某煤矿3煤开采厚110 m砾岩层为高位主关键层,采用UDEC软件模拟计算了含有砾岩层3煤开采地表下沉和水平移动值,及砾岩层厚度分别为50 m、100 m、150 m、200 m时不同高度处的岩层下沉值;分析了位于砾岩层上和砾岩层下及砾岩层内部不同高度岩层下沉值变化规律。又根据砾岩层受开采影响内部岩块能量运移过程,建立了砾岩层内部能量与体应变、tanβ间函数模型。研究表明:砾岩层内部岩块运动过程中体积不断扩展,阻止了岩层移动向地表移动传播;开采区域上覆岩体存在多个离层空间,这些离层空间承担了地表变形当量,使地表变形值偏小。
This paper focuses on the mechanism of small surface movement and deformation of coal mining under conglomerate stratum 3. Based on the critical stratum theory, the 110 m thick conglomerate stratum of no. 3 coal mining in Shandong is determined as the high key stratum. UDEC software is used to simulate and calculate the surface subsidence and horizontal movement values of coal mining with conglomerate layer 3, and the strata subsidence values at different heights when conglomerate layer thickness is 50 m, 100 m, 150 m and 200 m respectively. The subsidence values of strata at different heights above and below the conglomerate layer and in the conglomerate layer are analyzed. According to the process of energy migration in conglomerate strata affected by mining, the function models of energy, bulk strain and tanβ in conglomerate strata are established. The results show that the volume of rock blocks in the conglomerate layer expands continuously during the movement process, which prevents the movement of rock strata from moving to the surface. There are multiple separation spaces in the overlying rock mass in the mining area, which bear the equivalent surface deformation and make the surface deformation value smaller.

References

[1]  钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996(3): 2-7.
[2]  许家林, 钱鸣高. 覆岩关键层位置的判别方法[J]. 中国矿业大学学报, 2000(5): 21-25.
[3]  茅献彪, 缪协兴, 钱鸣高. 采动覆岩中复合关键层的断裂跨距计算[J]. 岩土力学, 1999(2): 1-4.
[4]  缪协兴, 陈荣华, 浦海, 等. 采场覆岩厚关键层破断与冒落规律分析[J]. 岩石力学与工程学报, 2005(8): 1289-1295.
[5]  左建平, 孙运江, 文金浩, 等. 岩层移动理论与力学模型及其展望[J]. 煤炭科学技术, 2018, 46(1): 1-11+87.
[6]  高超, 徐乃忠, 何标庆, 等. 关键层对特厚煤层综放开采地表沉陷规律的影响研究[J]. 煤炭科学技术, 2019, 47(9): 229-234.
[7]  于秋鸽, 张华兴, 邓伟男, 等. 基于关键层理论的地表偏态下沉影响因素分析[J]. 煤炭学报, 2018, 43(5): 1322-1327.
[8]  郝彬彬, 王春红, 洛锋. 基于关键层理论的地表沉陷规律研究[J]. 煤炭技术, 2015, 34(4): 127-129.
[9]  刘玉成, 曹树刚. 基于关键层理论的地表下沉盆地模型初探[J]. 岩土力学, 2012, 33(3): 719-724.
[10]  国家安全监管总局, 国家煤矿安监局, 国家能源局, 国家铁路局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S]. 北京: 煤炭工业出版社, 2017.
[11]  Zhao, J.H., et al. (2020) Distribution Characteristics of Floor Pore Water Pressure Based on Similarity Simulation Experiments. Bulletin of Engineering Geology and the Environment, 79, 4805-4816.
[12]  钱鸣高, 石平五. 矿山压力与岩层控制[M]. 北京: 煤炭工业出版社, 2003: 101-104.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133