Sequence similarities were found between protein and DNA sequences encoding certain part of conserved variable immunoglobulin domains (i.e. conserved IgV) and phosphorylation sites. Hypermutation motifs were then indicated in the majority of the corresponding non-IgV nucleotide sequences. According to database confirmations or double prediction of phosphorylation sites, 80% of the selected human and mouse IgV-related phosphorylation sites or their highly probable candidates exhibited substrate relationship to ataxia-telangiectasia-mutated kinase known as ATM. In accordance with literature data, inactivation of ATM by mutations can participate in the mechanisms of carcinogenesis, neurodegeneration and possibly also in aging. In agreement with this relationship, some of the selected IgV-/ATM-related segments formed molecules specifically involved in carcinogenesis. The selected IgV-related sequence segments were also similar to certain segments of higher plants containing immunoglobulin-like repeats and related regions. Bioinformatic analysis of some selected plant sequences then indicated the presence of catalytic domains composing serine/threonine/tyrosine receptor/receptor-like kinases, which are considered important structures for evolution of very early and part of later Ig-domain-related immunity. The analyzed conserved domain similarities also suggested certain interesting structural and phylogenic relationships, which need to be further investigated. This review in fact briefly summarizes the findings on the subject from the last twenty years.
References
[1]
Kubrycht, J. and Sigler, K. (1997) Animal Membrane Receptors and Adhesive Molecules. Critical Reviews in Biotechnology, 17, 123-147.
https://doi.org/10.3109/07388559709146610
[2]
Kubrycht, J., Borecký, J. and Sigler, K. (2002) Sequence Similarities of Protein Kinase Peptide Substrates and Inhibitors: Comparison of Their Primary Structures with Immunoglobulin Repeats. Folia Microbiologica, 47, 319-358.
https://doi.org/10.1007/BF02818689
[3]
Kubrycht, J. and Borecký, J. (1998) Matrix Formalization for Simple Sequence Comparison and Visualization of Short Sequence Relationships. Imunologický Zpravodaj, 27, 21-27.
[4]
Kubrycht, J., Borecký, J., Souček, P. and Ježek, P. (2004) Sequence Similarities of Protein Kinase Substrates and Inhibitors with Immunoglobulins and Model Immunoglobulin Homologue: Cell Adhesion Molecule from the Living Fossil Sponge Geodia cydonium. Mapping of Coherent Database Similarities and Implications for Evolution of CDR1 and Hypermutation. Folia Microbiologica, 49, 219-246.
https://doi.org/10.1007/BF02931038
[5]
Kubrycht, J., Sigler, K., Růžička, M., Souček, P., Borecký, J. and Ježek, P. (2006) Ancient Phylogenetic Beginnings of Immunoglobulin Hypermutation. Journal of Molecular Evolution, 63, 691-706. https://doi.org/10.1007/s00239-006-0051-9
[6]
Kubrycht, J., Sigler, K., Souček, P. and Hudeček, J. (2016) Antibody-like Phosphorylation Sites in Focus of Statistically Based Bilingual Approach. Computational Molecular Bioscience, 6, 1-22. https://doi.org/10.4236/cmb.2016.61001
[7]
Kubrycht, J., Sigler, K., Souček, P. and Hudeček, J. (2013) Structures Composing Protein Domains. Biochimie, 95, 1511-1524.
https://doi.org/10.1016/j.biochi.2013.04.001
[8]
Tram, E., Savas, S. and Ozcelik, H. (2013) Missense Variants of Uncertain Significance (VUS) Altering the Phosphorylation Patterns of BRCA1 and BRCA2. PLoS One, 8, e62468. https://doi.org/10.1371/journal.pone.0062468
[9]
Wang, Y., Cheng, H., Pan, Z., Ren, J., Liu, Z. and Xue, Y. (2015) Reconfiguring Phosphorylation Signaling by Genetic Polymorphisms Affects Cancer Susceptibility. Journal of Molecular and Cellular Biology, 7, 187-202.
https://doi.org/10.1093/jmcb/mjv013
[10]
Ma, S., Menon, R., Poulos, R.C. and Wong, J.W.H. (2017) Proteogenomic Analysis Prioritises Functional Single Nucleotide Variants in Cancer Samples. Oncotarget, 8, 95841-95852. https://doi.org/10.18632/oncotarget.21339
[11]
Lin, H.P., Ho, H.M., Chang, C.W., Yeh, S.D., Su, Y.W., Tan, T.H. and Lin, W.J. (2019) DUSP22 Suppresses Prostate Cancer Proliferation by Targeting the EGFR-AR Axis. The FASEB Journal, 33, 14653-14667.
https://doi.org/10.1096/fj.201802558RR
[12]
Liu, G., Weiner, H.L., Pederson, W.C., Davies, L. and Buchanan, E.P. (2019) Beta-Catenin Mutation with Complex Chromosomal Changes in Desmoid Tumor of the Scalp: A Case Report. Craniomaxillofacial Trauma & Reconstruction, 12, 146-149.
https://doi.org/10.1055/s-0038-1676078
[13]
Lin, S., Wang, C., Zhou, J., Shi, Y., Ruan, C., Tu, Y., et al. (2021) EPSD: A Well-Annotated Data Resource of Protein Phosphorylation Sites in Eukaryotes. Briefings in Bioinformatics, 22, 298-307. https://doi.org/10.1093/bib/bbz169
[14]
Kubrycht, J. and Sigler, K. (2020) Conserved Immunoglobulin Domain Similarities of Higher Plant Proteins. Computational Molecular Bioscience, 10, 12-44.
https://doi.org/10.4236/cmb.2020. 101002
[15]
Hanks, S.K., Quinn, A.M. and Hunter, T. (1988) The Protein Kinase Family: Conserved Features and Deduced Phylogeny of the Catalytic Domains. Science, 241, 42-52. https://doi.org/10.1126/science.3291115
[16]
Hirayama, T. and Oka, A. (1992) Novel Protein Kinase of Arabidopsis thaliana (APK1) that Phosphorylates Tyrosine, Serine and Threonine. Plant Molecular Biology, 20, 653-662. https://doi.org/10.1007/BF00046450
[17]
Rudrabhatla, P., Reddy, M.M. and Rajasekharan, R. (2006) Genome-wide Analysis and Experimentation of Plant Serine/Threonine/Tyrosine-Specific Protein Kinases. Plant Molecular Biology, 60, 293-319. https://doi.org/10.1007/s11103-005-4109-7
[18]
Klaus-Heisen, D., Nurisso, A., Pietraszewska-Bogiel, A., Mbengue, M., Camut, S., Timmers, T., et al. (2011) Structure-Function Similarities between a Plant Receptor-Like Kinase and the Human Interleukin-1 Receptor-Associated Kinase-4. Journal of Biological Chemistry, 286, 11202-11210.
https://doi.org/10.1074/jbc.M110.186171
[19]
Stancik, I.A., Šestak, M.S., Ji, B., Axelson-Fisk, M., Franjevic, D., Jers, C., et al. (2018) Serine/Threonine Protein Kinases from Bacteria, Archaea and Eukarya Share a Common Evolutionary Origin Deeply Rooted in the Tree of Life. Journal of Molecular Biology, 430, 27-32. https://doi.org/10.1016/j.jmb.2017.11.004
[20]
Blom, N., Gammeltoft, S. and Brunak, S. (1999) Sequence- and Structure-Based Prediction of Eukaryotic Protein Phosphorylation Sites. Journal of Molecular Biology, 294, 1351-1362. https://doi.org/10.1006/jmbi.1999.3310
[21]
Wong, Y.H., Lee, T.Y., Liang, H.K., Huang, C.M., Wang, T.Y., Yang, Y.H., et al. (2007) KinasePhos 2.0: A Web Server for Identifying Protein Kinase-Specific Phosphorylation Sites Based on Sequences and Coupling Patterns. Nucleic Acids Research, 35, W588-W594. https://doi.org/10.1093/nar/gkm322
[22]
Kubrycht, J. and Sigler K. (2008) Length of the Hypermutation Motif DGYW/ WRCH in the Focus of Statistical Limits. Implications for a Double-Motif or Extended Motif Recognition Models. Journal of Theoretical Biology, 255, 8-15.
https://doi.org/10.1016/j.jtbi.2008.07.039
[23]
Roberts, S.A. and Gordenin, D.A. (2014) Hypermutation in Human Cancer Genomes: Footprints and Mechanisms. Nature Reviews on Cancer, 14, 786-800.
https://doi.org/10.1038/nrc3816
[24]
Dinkel, H., Chica, C., Via, A., Gould, C.M., Jensen, L.J., Gibson, T.J. and Diella, F. (2011) Phospho.ELM: A Database of Phosphorylation Sites—Update 2011. Nucleic Acids Research, 39, D261-D267. https://doi.org/10.1093/nar/gkq1104
[25]
Gnad, F., Gunawardena, J. and Mann, M. (2011) PHOSIDA 2011: The Posttranslational Modification Database. Nucleic Acids Research, 39, D253-D260.
https://doi.org/10.1093/nar/gkq1159
[26]
Okazaki, N., Kikuno, R., Ohara, R., Inamoto, S., Hara, Y., Nagase, T., et al. (2002) Prediction of the Coding Sequences of Mouse Homologues of KIAA Gene: I. The Complete Nucleotide Sequences of 100 Mouse KIAA-homologous cDNAs Identified by Screening of Terminal Sequences of cDNA Clones Randomly Sampled from Size-Fractionated Libraries. DNA Research, 9, 179-188.
https://doi.org/10.1093/dnares/9.5.179
[27]
Bayona-Bafaluy, M.P., Acín-Pérez, R., Mullikin, J.C., Park, J.S., Moreno-Loshuertos, R., Hu, P., et al. (2003) Revisiting the Mouse Mitochondrial DNA Sequence. Nucleic Acids Research, 31, 5349-5355. https://doi.org/10.1093/nar/gkg739
[28]
Church, D.M., Goodstadt, L., Hillier, L.W., Zody, M.C., Goldstein, S., She, X., et al. (2009) Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse. PLoS Biology, 7, e1000112. https://doi.org/10.1371/journal.pbio.1000112
[29]
Steward, C.A., Humphray, S., Plumb, B., Jones, M.C., Quail, M.A., Rice, S., et al. (2010) Genome-Wide End-Sequenced BAC Resources for the NOD/MrkTac and NOD/ShiLtJ Mouse Genomes. Genomics, 95, 105-110.
https://doi.org/10.1016/j.ygeno.2009.10.004
Maruyama, Y., Wakamatsu, A., Kawamura, Y., Kimura, K., Yamamoto, J., Nishikawa, T., et al. (2009) Human Gene and Protein Database (HGPD): A Novel Database Presenting a Large Quantity of Experiment-Based Results in Human Proteomics. Nucleic Acids Research, 37, D762-D766. https://doi.org/10.1093/nar/gkn872
[32]
Beausoleil, S.A., Jedrychowski, M., Schwartz, D., Elias, J.E., Villén, J., Li, J., et al. (2004) Large-Scale Characterization of HeLa Cell Nuclear Phosphoproteins. Proceedings of the National Academy of Sciences of the United States of America, 101, 12130-12135. https://doi.org/10.1073/pnas.0404720101
[33]
Denoeud, F., Kapranov, P., Ucla, C., Frankish, A., Castelo, R., Drenkow, J., et al. (2007) Prominent Use of Distal 5’ Transcription Start Sites and Discovery of a Large Number of Additional Exons in ENCODE Regions. Genome Research, 17, 746-759.
https://doi.org/10.1101/gr.5660607
[34]
Schmutz, J., Martin, J., Terry, A., Couronne, O., Grimwood, J., Lowry, S., et al. (2004) The DNA Sequence and Comparative Analysis of Human Chromosome 5. Nature, 431, 268-274. https://doi.org/10.1038/nature02919
[35]
Kennedy, J.M., Fodil, N., Torre, S., Bongfen, S.E., Olivier, J.F., Leung, V., et al. (2014) CCDC88B is a Novel Regulator of Maturation and Effector Functions of T Cells during Pathological Inflammation. Journal of Experimental Medicine, 211, 2519-2535. https://doi.org/10.1084/jem.20140455
[36]
Distler, U., Schmeisser, M.J., Pelosi, A., Reim, D., Kuharev, J., Weiczner, R., et al. (2014) In-Depth Protein Profiling of the Postsynaptic Density from Mouse Hippocampus Using Data-Independent Acquisition Proteomics. Proteomics, 14, 2607-2613. https://doi.org/10.1002/pmic.201300520
[37]
Bosserhoff, A.K., Moser, M. and Buettner, R. (2004) Characterization and Expression Pattern of the Novel MIA Homolog TANGO. Gene Expression Patterns, 4, 473-479. https://doi.org/10.1016/j.modgep.2003.12.002
[38]
Okabe, H., Furukawa, Y., Kato, T., Hasegawa, S., Yamaoka, Y. and Nakamura, Y. (2004) Isolation of Development and Differentiation Enhancing Factor-like 1 (DDEFL1) as a Drug Target for Hepatocellular Carcinomas. International Journal of Oncology, 24, 43-48.
[39]
Albrecht, D.E. and Froehner, S.C. (2004) DAMAGE, a Novel Alpha-Dystrobrevin-Associated MAGE Protein in Dystrophin Complexes. Journal of Biological Chemistry, 279, 7014-7023. https://doi.org/10.1074/jbc.M312205200
[40]
Chae, T.H., Allen, K.M., Davisson, M.T., Sweet, H.O. and Walsh, C.A. (2002) Mapping of the Mouse hyh Gene to a YAC/BAC Contig on Proximal Chromosome 7. Mammalian Genome, 13, 239-244. https://doi.org/10.1007/s00335-001-2144-5
[41]
Terman, B.I., Carrion, M.E., Kovacs, E., Rasmussen, B.A., Eddy, R.L. and Shows, T.B. (1991) Identification of a New Endothelial Cell Growth Factor Receptor Tyrosine Kinase. Oncogene, 6, 1677-1683.
[42]
Stagni, V., Cirotti, C. and Barilà, D. (2018) Ataxia-Telangiectasia Mutated Kinase in the Control of Oxidative Stress, Mitochondria, and Autophagy in Cancer: A Maestro with a Large Orchestra. Frontiers in Oncology, 8, Article No. 73.
https://doi.org/10.3389/fonc.2018.00073
[43]
Shiloh, Y. (2020) The Cerebellar Degeneration in Ataxia-Telangiectasia: A Case for Genome Instability. DNA Repair, 95, Article ID: 102950.
https://doi.org/10.1016/j.dnarep.2020.102950
[44]
Stagni, V., Ferri, A., Cirotti, C. and Barilà, D. (2021) ATM Kinase-Dependent Regulation of Autophagy: A Key Player in Senescence? Frontiers in Cellular and Developmental Biology, 8, Article ID: 599048. https://doi.org/10.3389/fcell.2020.599048
[45]
Barzilai, A., Rotman, G. and Shiloh, Y. (2002) ATM Deficiency and Oxidative Stress: A New Dimension of Defective Response to DNA Damage. DNA Repair, 1, 3-25. https://doi.org/10.1016/s1568-7864(01)00007-6
[46]
Crawford, T.O., Skolasky, R.L., Fernandez, R., Rosquist, K.J. and Lederman, H.M. (2006) Survival Probability in Ataxia Telangiectasia. Archives of Disease in Childhood, 91, 610-611. https://doi.org/10.1136/adc.2006.094268
[47]
Boohaker, R.J. and Xu, B. (2014) The Versatile Functions of ATM Kinase. Biomedical Journal, 37, 3-9. https://doi.org/10.4103/2319-4170.125655
[48]
Choy, K.R. and Watters, D.J. (2018) Neurodegeneration in Ataxia-Telangiectasia: Multiple Roles of ATM Kinase in Cellular Homeostasis. Developmental Dynamics, 247, 33-46. https://doi.org/10.1002/dvdy.24522
[49]
Bhagwat, A.S., Hao, W., Townes, J.P., Lee, H., Tang, H. and Foster, P.L. (2016) Strand-Biased Cytosine Deamination at the Replication Fork Causes Cytosine to Thymine Mutations in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 113, 2176-2181.
https://doi.org/10.1073/pnas.1522325113
[50]
Haradhvala, N.J., Polak, P., Stojanov, P., Covington, K.R., Shinbrot, E. and Hess, J.M., et al. (2016) Mutational Strand Asymmetries in Cancer Genomes Reveal Mechanisms of DNA Damage and Repair. Cell, 164, 538-549.
https://doi.org/10.1016/j.cell.2015.12.050
[51]
Hoopes, J.I., Cortez, L.M., Mertz, T.M., Malc, E.P., Mieczkowski, P.A. and Roberts S.A. (2016) APOBEC3A and APOBEC3B Deaminate the Lagging Strand Template During DNA Replication. Cell Reports, 14, 1273-1282.
https://doi.org/10.1016/j.celrep.2016.01.021
[52]
Morganella, S., Alexandrov, L.B., Glodzik, D., Zou, X., Davies, H., Staaf, J., et al. (2016) The Topography of Mutational Processes in Breast Cancer Genomes. Nature Communications, 7, Article ID: 11383. https://doi.org/10.1038/ncomms11383
[53]
Seplyarskiy, V.B., Soldatov, R.A., Popadin, K.Y., Antonarakis, S.E., Bazykin, G.A. and Nikolaev, S.I. (2016) APOBEC-Induced Mutations in Human Cancers Are Strongly Enriched on the Lagging DNA Strand during Replication. Genome Research, 26, 174-182. https://doi.org/10.1101/gr.197046.115.
[54]
Saini, N. and Gordenin, D.A. (2020) Hypermutation in Single-Stranded DNA. DNA Repair, 91-92, Article ID: 102868. https://doi.org/10.1016/j.dnarep.2020.102868
[55]
Derelle, R., Torruella, G., KlimeŠ, V., Brinkmann, H., Kim, E., Vlček, Č., et al. (2015) Bacterial Proteins Pinpoint a Single Eukaryotic Root. Proceedings of the National Academy of Sciences of the United States of America, 112, E693-E969.
https://doi.org/10.1073/pnas.1420657112.
[56]
Plattner, H. and Verkhratsky, A. (2015) The Ancient Roots of Calcium Signalling Evolutionary Tree. Cell Calcium, 57, 123-132.
https://doi.org/10.1016/j.ceca.2014.12.004
[57]
Beckmann, L., Edel, K.H., Batistič, O. and Kudla, J. (2016) A Calcium Sensor-Protein Kinase Signaling Module Diversified in Plants and is Retained in All Lineages of Bikonta Species. Science Reports, 6, Article No. 31645.
https://doi.org/10.1038/srep31645
[58]
Plattner, H. (2018) Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. Journal of Eukaryotic Microbiology, 65, 255-289.
https://doi.org/10.1111/jeu.12449
[59]
Marchler-Bauer, A., Panchenko, A.R., Shoemaker, B.A., Thiessen, P.A., Geer, L.Y. and Bryant, S.H. (2002) CDD: A Database of Conserved Domain Alignments with Links to Domain Three-Dimensional Structure. Nucleic Acids Research, 30, 281-283.
https://doi.org/10.1093/nar/30.1.281
Li, D., Deng, Z., Qin, B., Liu, X. and Men, Z. (2012) De Novo Assembly and Characterization of Bark Transcriptome Using Illumina Sequencing and Development of EST-SSR Markers in Rubber Tree (Hevea brasiliensis Muell. Arg.). BMC Genomics, 13, Article No. 192. https://doi.org/10.1186/1471-2164-13-192
[62]
Light, S., Sagit, R., Ithychanda, S.S., Qin, J. and Elofsson, A. (2012) The Evolution of Filamin—A Protein Domain Repeat Perspective. Journal of Structural Biology, 179, 289-298. https://doi.org/10.1016/j.jsb.2012.02.010
[63]
Fallen, K., Banerjee, S., Sheehan, J., Addison, D., Lewis, L.M., Meiler, J. and Denton, J.S. (2009) The Kir Channel Immunoglobulin Domain is Essential for Kir1.1 (ROMK) Thermodynamic Stability, Trafficking and Gating. Channels, 3, 57-68.
https://doi.org/10.4161/chan.3.1.7817
[64]
Yereddi, N.R., Cusdin, F.S., Namadurai, S., Packman, L.C., Monie, T.P., Slavny, P., et al. (2013) The Immunoglobulin Domain of the Sodium Channel β3 Subunit Contains a Surface-Localized Disulfide Bond that Is Required for Homophilic Binding. The FASEB Journal, 27, 568-580. https://doi.org/10.1096/fj.12-209445
[65]
Ming, R., Van Buren, R., Liu, Y., Yang, M., Han, Y., Li, L.T., et al. (2013) Genome of the Long-Living Sacred Lotus (Nelumbo nucifera Gaertn.). Genome Biology, 14, Article No. R41. https://doi.org/10.1186/gb-2013-14-5-r41
[66]
Bohlmann, J., Stauber, E.J., Krock, B., Oldham, N.J., Gershenzon, J. and Baldwin, I.T. (2002) Gene Expression of 5-epi-Aristolochene Synthase and Formation of Capsidiol in Roots of Nicotiana attenuata and N. sylvestris. Phytochemistry, 60, 109-116. https://doi.org/10.1016/s0031-9422(02)00080-8
[67]
Tang, C., Yang, M., Fang, Y., Luo, Y., Gao, S., Xiao, X., et al. (2016) The Rubber Tree Genome Reveals New Insights into Rubber Production and Species Adaptation. Nature Plants, 2, Article No. 16073. https://doi.org/10.1038/nplants.2016.73
Uthaipaisanwong, P., Chanprasert, J., Shearman, J.R., Sangsrakru, D., Yoocha, T., Jomchai, N., et al. (2012) Characterization of the Chloroplast Genome Sequence of Oil Palm (Elaeis guineensis Jacq.). Gene, 500, 172-180.
https://doi.org/10.1016/j.gene.2012.03.061
[70]
Singh, R., Ong-Abdullah, M., Low, E.T., Manaf, M.A., Rosli, R., Nookiah, R., et al. (2013) Oil Palm Genome Sequence Reveals Divergence of Interfertile Species in Old and New Worlds. Nature, 500, 335-339. https://doi.org/10.1038/nature12309
[71]
Pecrix, Y., Staton, S.E., Sallet, E., Lelandais-Brière, C., Moreau, S., Carrère, S., et al. (2018) Whole-Genome Landscape of Medicago truncatula Symbiotic Genes. Nature Plants, 4, 1017-1025. https://doi.org/10.1038/s41477-018-0286-7
[72]
Lescot, M., Piffanelli, P., Ciampi, A.Y., Ruiz, M., Blanc, G., Leebens-Mack, J., et al. (2008) Insights into the Musa Genome: Syntenic Relationships to Rice and Between Musa Species. BMC Genomics, 9, Article No. 58.
https://doi.org/10.1186/1471-2164-9-58
[73]
Hoshino, A., Jayakumar, V., Nitasaka, E., Toyoda, A., Noguchi, H., Itoh, T., et al. (2016) Genome Sequence and Analysis of the Japanese Morning Glory Ipomoea nil. Nature Communications, 7, Article No. 13295.
https://doi.org/10.1038/ncomms13295
[74]
Iorizzo, M., Senalik, D.A., Grzebelus, D., Bowman, M., Cavagnaro, P.F., Matvienko, et al. (2011) De Novo Assembly and Characterization of the Carrot Transcriptome Reveals Novel Genes, New Markers, and Genetic Diversity. BMC Genomics, 12, Article No. 389. https://doi.org/10.1186/1471-2164-12-389
[75]
Iorizzo, M., Ellison, S., Senalik, D., Zeng, P., Satapoomin, P., Huang, J., et al. (2016) A High-Quality Carrot Genome Assembly Provides New Insights into Carotenoid Accumulation and Asterid Genome Evolution. Nature Genetics, 48, 657-666.
https://doi.org/10.1038/ng.3565
[76]
Mochida, K., Uehara-Yamaguchi, Y., Takahashi, F., Yoshida, T., Sakurai, T. and Shinozaki, K. (2013) Large-Scale Collection and Analysis of Full-Length cDNAs from Brachypodium distachyon and Integration with Pooideae Sequence Resources. PLoS ONE, 8, e75265. https://doi.org/10.1371/journal.pone.0075265
[77]
Shalchian-Tabrizi, K., Minge, M.A., Espelund, M., Orr, R., Ruden, T., Jakobsen, K.S. and Cavalier-Smith, T. (2008) Multigene Phylogeny of Choanozoa and the Origin of Animals. PLoS ONE, 3, e2098. https://doi.org/10.1371/journal.pone.0002098
[78]
Tikhonenkov, D.V., Hehenberger, E., Esaulov, A.S., Belyakova, O.I., Mazei, Y.A., Mylnikov, A.P., et al. (2020) Insights into the Origin of Metazoan Multicellularity from Predatory Unicellular Relatives of Animals. BMC Biology, 18, Article No. 39.
https://doi.org/10.1186/s12915-020-0762-1
[79]
Sakamoto, T., Deguchi, M., Brustolini, O.J., Santos, A.A., Silva, F.F. and Fontes, E.P. (2012) The Tomato RLK Superfamily: Phylogeny and Functional Predictions about the Role of the LRRII-RLK Subfamily in Antiviral Defense. BMC Plant Biology, 12, Article No. 229. https://doi.org/10.1186/1471-2229-12-229
[80]
Zorzatto, C., Machado, J.P., Lopes, K.V., Nascimento, K.J., Pereira, W.A., Brustolini, O.J., et al. (2015) NIK1-Mediated Translation Suppression Functions as a Plant Antiviral Immunity Mechanism. Nature, 520, 679-682.
https://doi.org/10.1038/nature14171
[81]
Calil, I.P. and Fontes, E.P.B. (2017) Plant Immunity against Viruses: Antiviral Immune Receptors in Focus. Annals of Botany, 119, 711-723.
https://doi.org/10.1093/aob/mcw200
[82]
Gouveia, B.C., Calil, I.P., Machado, J.P., Santos, A.A. and Fontes, E.P. (2017) Immune Receptors and Co-Receptors in Antiviral Innate Immunity in Plants. Frontiers in Microbiology, 7, Article No. 2139. https://doi.org/10.3389/fmicb.2016.02139
[83]
Teixeira, R.M., Ferreira, M.A., Raimundo, G.A.S., Loriato, V.A.P., Reis, P.A.B and Fontes, E.P.B. (2019) Virus Perception at the Cell Surface: Revisiting the Roles of Receptor-Like Kinases as Viral Pattern Recognition Receptors. Molecular Plant Pathology, 20, 1196-1202. https://doi.org/10.1111/mpp.12816
[84]
Zhang, X., Wang, X., Xu, K., Jiang, Z., Dong, K., Xie, X., et al. (2021) The Serine/Threonine/Tyrosine Kinase STY46 Defends against Hordeivirus Infection by Phosphorylating γb Protein. Plant Physiology, 186, 715-730.
https://doi.org/10.1093/plphys/kiab056
[85]
Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., et al. (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) Database and Website. British Journal of Cancer, 91, 355-358. https://doi.org/10.1038/sj.bjc.6601894
[86]
Huang, P.J., Chiu, L.Y., Lee, C.C., Yeh, Y.M., Huang, K.Y., Chiu, C.H. and Tang, P. (2018) mSignatureDB: A Database for Deciphering Mutational Signatures in Human Cancers. Nucleic Acids Research, 46, D964-D970.
https://doi.org/10.1093/nar/gkx1133
[87]
Tate, J.G., Bamford, S., Jubb, H.C., Sondka, Z., Beare, D.M., Bindal, N., et al. (2019) COSMIC: The Catalogue of Somatic Mutations in Cancer. Nucleic Acids Research, 47, D941-D947. https://doi.org/10.1093/nar/gky1015
[88]
Krassowski, M., Pellegrina, D., Mee, M.W., Fradet-Turcotte, A., Bhat, M. and Reimand, J. (2021) ActiveDriverDB: Interpreting Genetic Variation in Human and Cancer Genomes Using Post-Translational Modification Sites and Signaling Networks (2021 Update). Frontiers in Cellular and Developmental Biology, 9, Article ID: 626821. https://doi.org/10.3389/fcell.2021.626821
[89]
Wang, T., Ruan, S., Zhao, X., Shi, X., Teng, H., Zhong, J., et al. (2021) OncoVar: An Integrated Database and Analysis Platform for Oncogenic Driver Variants in Cancers. Nucleic Acids Research, 49, D1289-D1301.
https://doi.org/10.1093/nar/gkaa1033
[90]
Nakamura, Y., Komiyama, T., Furue, M., Gojobori, T. and Akiyama, Y. (2010) CIG-DB: The Database for Human or Mouse Immunoglobulin and T Cell Receptor Genes Available for Cancer Studies. BMC Bioinformatics, 11, Article No. 398.
https://doi.org/10.1186/1471-2105-11-398
[91]
Gupta, S., Chaudhary, K., Dhanda, S.K., Kumar, R., Kumar, S., Sehgal, M., et al. (2016) A Platform for Designing Genome-Based Personalized Immunotherapy or Vaccine Against Cancer. PLoS ONE, 11, e0166372.
https://doi.org/10.1371/journal.pone.0166372
[92]
Olsen, L.R., Tongchusak, S., Lin, H., Reinherz, E.L., Brusic, V. and Zhang, G.L. (2017) TANTIGEN: A Comprehensive Database of Tumor T Cell Antigens. Cancer Immunology and Immunotherapy, 66, 731-735.
https://doi.org/10.1007/s00262-017-1978-y
[93]
Wu, J., Zhao, W., Zhou, B., Su, Z., Gu, X., Zhou, Z. and Chen, S. (2018) TSNAdb: A Database for Tumor-Specific Neoantigens from Immunogenomics Data Analysis. Genomics Proteomics Bioinformatics, 16, 276-282.
https://doi.org/10.1016/j.gpb.2018.06.003
[94]
Xia, J., Bai, P., Fan, W., Li, Q., Li, Y., Wang, D., et al. (2021) NEPdb: A Database of T-cell Experimentally-Validated Neoantigens and Pan-Cancer Predicted Neoepitopes for Cancer Immunotherapy. Frontiers in Immunology, 12, Article ID: 644637.
https://doi.org/10.3389/fimmu.2021. 644637
[95]
Zhang, G., Chitkushev, L., Olsen, L.R., Keskin, D.B. and Brusic, V. (2021) TANTIGEN 2.0: A Knowledge Base of Tumor T Cell Antigens and Epitopes. BMC Bioinformatics, 22, Article No. 40. https://doi.org/10.1186/s12859-021-03962-7
[96]
He, Y., Racz, R., Sayers, S., Lin, Y., Todd, T., Hur, J., et al. (2014) Updates on the Web-Based VIOLIN Vaccine Database and Analysis System. Nucleic Acids Research, 42, D1124-D1132. https://doi.org/10.1093/nar/gkt1133
[97]
Kim, P., Zhao, J., Lu, P. and Zhao, Z. (2017) mutLBSgeneDB: Mutated Ligand Binding Site Gene DataBase. Nucleic Acids Research, 45, D256-D263.
https://doi.org/10.1093/nar/gkw905
[98]
Hu, R., Xu, H., Jia, P. and Zhao, Z. (2021) KinaseMD: Kinase Mutations and Drug Response Database. Nucleic Acids Research, 49, D552-D561.
https://doi.org/10.1093/nar/gkaa945
[99]
Ryslik, G.A., Cheng, Y., Cheung, K.H., Bjornson, R.D., Zelterman, D., Modis, Y. and Zhao, H. (2014) A Spatial Simulation Approach to Account for Protein Structure when Identifying Non-Random Somatic Mutations. BMC Bioinformatics, 15, Article No. 231. https://doi.org/10.1186/1471-2105-15-231
[100]
Zhao, W., Yang, J., Wu, J., Cai, G., Zhang, Y., Haltom, J., et al. (2021) CanDriS: Posterior Profiling of Cancer-Driving Sites Based on Two-Component Evolutionary Model. Briefings in Bioinformatics, 22, bbab131.
https://doi.org/10.1093/bib/bbab131
[101]
Garcia-Boronat, M., Diez-Rivero, C.M., Reinherz, E.L. and Reche, P.A. (2008) PVS: A Web Server for Protein Sequence Variability Analysis Tuned to Facilitate Conserved Epitope Discovery. Nucleic Acids Research, 36, W35-W41.
https://doi.org/10.1093/nar/gkn211
[102]
Stranzl, T., Larsen, M.V., Lundegaard, C. and Nielsen, M. (2010) NetCTLpan: Pan-Specific MHC Class I Pathway Epitope Predictions. Immunogenetics, 62, 357-368.
https://doi.org/10.1007/s00251-010-0441-4
[103]
Tung, C.W., Ziehm, M., Kämper, A., Kohlbacher, O. and Ho, S.Y. (2011) POPISK: T-Cell Reactivity Prediction Using Support Vector Machines and String Kernels. BMC Bioinformatics, 12, Article No. 446. https://doi.org/10.1186/1471-2105-12-446
[104]
Oyarzún, P., Ellis, J.J., Bodén, M. and Kobe, B. (2013) PREDIVAC: CD4+ T-Cell Epitope Prediction for Vaccine Design that Covers 95% of HLA Class II DR Protein Diversity. BMC Bioinformatics, 14, Article No. 52.
https://doi.org/10.1186/1471-2105-14-52
[105]
Dimitrov, I., Atanasova, M., Patronov, A., Flower, D.R. and Doytchinova, I. (2016) A Cohesive and Integrated Platform for Immunogenicity Prediction. In: Thomas, S., Ed., Vaccine Design. Methods in Molecular Biology, Humana, New York, 761-770.
https://doi.org/10.1007/978-1-4939-3389-1_50
[106]
Fleri, W., Paul, S., Dhanda, S.K., Mahajan, S., Xu, X., Peters, B. and Sette, A. (2017) The Immune Epitope Database and Analysis Resource in Epitope Discovery and Synthetic Vaccine Design. Frontiers in Immunology, 8, Article No. 278.
https://doi.org/10.3389/fimmu.2017.00278
[107]
Zhang, S., Chen, J., Hong, P., Li, J., Tian, Y., Wu, Y. and Wang, S. (2020) PromPDD, a Web-Based Tool for the Prediction, Deciphering and Design of Promiscuous Peptides that Bind to HLA Class I Molecules. Journal of Immunological Methods, 476, Article ID: 112685. https://doi.org/10.1016/j.jim.2019.112685
[108]
Zhou, Z., Lyu, X., Wu, J., Yang, X., Wu, S., Zhou, J., et al. (2017) TSNAD: An Integrated Software for Cancer Somatic Mutation and Tumour-Specific Neoantigen Detection. Royal Society Open Science, 4, Article ID: 170050.
https://doi.org/10.1098/rsos.170050
[109]
Popowicz, G.M., Müller, R., Noegel, A.A., Schleicher, M., Huber, R. and Holak, T.A. (2004) Molecular Structure of the Rod Domain of Dictyostelium Filamin. Journal of Molecular Biology, 342, 1637-1646. https://doi.org/10.1016/j.jmb.2004.08.017
[110]
Hsu, S.T., Cabrita, L.D., Fucini, P., Dobson, C.M. and Christodoulou, J. (2009) Structure, Dynamics and Folding of an Immunoglobulin Domain of the Gelation Factor (ABP-120) from Dictyostelium discoideum. Journal of Molecular Biology, 388, 865-879. https://doi.org/10.1016/j.jmb.2009.02.063
[111]
Hirose, S., Chen, G., Kuspa, A. and Shaulsky, G. (2017) The Polymorphic Proteins TgrB1 and TgrC1 Function as a Ligand-Receptor Pair in Dictyostelium Allorecognition. Journal of Cell Science, 130, 4002-4012. https://doi.org/10.1242/jcs.208975
[112]
Junqueira Alves, C., Yotoko, K., Zou, H. and Friedel, R.H. (2019) Origin and Evolution of Plexins, Semaphorins, and Met Receptor Tyrosine Kinases. Science Reports, 9, Article No. 1970. https://doi.org/10.1038/s41598-019-38512-y
[113]
Torruella, G., de Mendoza, A., Grau-Bové, X., Antó, M., Chaplin, M.A., del Campo, J., et al. (2015) Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi. Current Biology, 25, 2404-2410.
https://doi.org/10.1016/j.cub.2015.07.053
[114]
Burki, F., Kaplan, M., Tikhonenkov, D.V., Zlatogursky, V., Minh, B.Q., Radaykina, L.V., et al. (2016) Untangling the Early Diversification of Eukaryotes: A Phylogenomic Study of the Evolutionary Origins of Centrohelida, Haptophyta and Cryptista. Proceedings. Biological Sciences, 283, Article ID: 20152802.
https://doi.org/10.1098/rspb.2015.2802
[115]
Hug, L.A., Baker, B.J., Anantharaman, K., Brown, C.T., Probst, A.J., Castelle, C.J., et al. (2016) A New View of the Tree of Life, 2016. Nature Microbiology, 1, Article No. 16048. https://doi.org/10.1038/nmicrobiol.2016.48
[116]
Hehenberger, E., Tikhonenkov, D.V., Kolisko, M., Del Campo, J., Esaulov, A.S., Mylnikov, A.P. and Keeling, P.J. (2017) Novel Predators Reshape Holozoan Phylogeny and Reveal the Presence of a Two-Component Signaling System in the Ancestor of Animals. Current Biology, 27, 2043-2050.
https://doi.org/10.1016/j.cub.2017.06.006
[117]
Gitzendanner, M.A., Soltis, P.S., Wong, G.K., Ruhfel, B.R. and Soltis, D.E. (2018) Plastid Phylogenomic Analysis of Green Plants: A Billion Years of Evolutionary History. American Journal of Botany, 105, 291-301.
https://doi.org/10.1002/ajb2.1048
[118]
Cavalier-Smith, T. (2018) Kingdom Chromista and Its Eight Phyla: A New Synthesis Emphasising Periplastid Protein Targeting, Cytoskeletal and Periplastid Evolution, and Ancient Divergences. Protoplasma, 255, 297-357.
https://doi.org/10.1007/s00709-017-1147-3
[119]
Strassert, J.F.H., Jamy, M., Mylnikov, A.P., Tikhonenkov, D.V. and Burki, F. (2019) New Phylogenomic Analysis of the Enigmatic Phylum Telonemia further Resolves the Eukaryote Tree of Life. Molecular Biology of Evolution, 36, 757-765.
https://doi.org/10.1093/molbev/msz012
[120]
Li, L., Wang, S., Wang, H., Sahu, S.K., Marin, B., Li, H., et al. (2020) The Genome of Prasinoderma coloniale Unveils the Existence of a Third Phylum within Green Plants. Nature Ecology and Evolution, 4, 1220-1231.
https://doi.org/10.1038/s41559-020-1221-7
[121]
Federhen, S. (2012) The NCBI Taxonomy Database. Nucleic Acids Research, 40, D136-D143. https://doi.org/10.1093/nar/gkr1178
[122]
Schoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S., Khovanskaya, R., et al. (2020) NCBI Taxonomy: A Comprehensive Update on Curation, Resources and Tools. Database, 2020, baaa062. https://doi.org/10.1093/database/baaa062
[123]
Lang, B.F., O’Kelly, C., Nerad, T., Gray, M.W. and Burger, G. (2002) The Closest Unicellular Relatives of Animals. Current Biology, 12, 1773-1778.
https://doi.org/10.1016/s0960-9822(02)01187-9
[124]
Torruella, G., Derelle, R., Paps, J., Lang, B.F., Roger, A.J., Shalchian-Tabrizi, K. and Ruiz-Trillo, I. (2012) Phylogenetic Relationships within the Opisthokonta Based on Phylogenomic Analyses of Conserved Single-Copy Protein Domains. Molecular Biology of Evolution, 29, 531-544. https://doi.org/10.1093/molbev/msr185
[125]
Suga, H., Dacre, M., de Mendoza, A., Shalchian-Tabrizi, K., Manning, G. and Ruiz-Trillo, I. (2012) Genomic Survey of Premetazoans Shows Deep Conservation of Cytoplasmic Tyrosine Kinases and Multiple Radiations of Receptor Tyrosine Kinases. Science Signaling, 5, ra35. https://doi.org/10.1126/scisignal.2002733
[126]
Paps, J., Medina-Chacón, L.A., Marshall, W., Suga, H. and Ruiz-Trillo, I. (2013) Molecular Phylogeny of Unikonts: New Insights into the Position of Apusomonads and Ancyromonads and the Internal Relationships of Opisthokonts. Protist, 164, 2-12. https://doi.org/10.1016/j.protis.2012.09.002
[127]
Cao, L., Chen, F., Yang, X., Xu, W., Xie, J. and Yu, L. (2014) Phylogenetic Analysis of CDK and Cyclin Proteins in Premetazoan Lineages. BMC Evolutionary Biology, 14, Article No. 10. https://doi.org/10.1186/1471-2148-14-10
[128]
Sebé-Pedrós, A., Degnan, B.M. and Ruiz-Trillo, I. (2017) The Origin of Metazoa: A Unicellular Perspective. Nature Reviews Genetics, 18, 498-512.
https://doi.org/10.1038/nrg.2017.21
[129]
Naranjo-Ortiz, M.A. and Gabaldón, T. (2019) Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions. Biological Reviews, 94, 1443-1476.
https://doi.org/10.1111/brv.12510
[130]
Arroyo, A.S., Iannes, R., Bapteste, E. and Ruiz-Trillo, I. (2020) Gene Similarity Networks Unveil a Potential Novel Unicellular Group Closely Related to Animals from the Tara Oceans Expedition. Genome Biology and Evolution, 12, 1664-1678.
https://doi.org/10.1093/gbe/evaa117