全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mineralogy and Geochemistry of Eteké Eburnean Gold Deposit (Gabon)

DOI: 10.4236/ojg.2022.123016, PP. 294-311

Keywords: Eburnean Orogeny, Gabon, Gold, Greenstone, Granitoids, Amphibolite

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Gabon geology offered favorable and natural environments for the formation of various types of mineralization. The Etéké gold district, aim of this study, is located in the Ngounié province (southern Gabon) on the western edge of the Chaillu massif. Geologically, the gold mineralization is associated with the Eburnean orogeny and hosted in the Archean greenstone belts. Also, this deposit is covered by a significant vegetation cover and a very extensive lateritic weathering profile, which hinders the most accurate study. Through this paper, we aim to propose a genesis pattern of this mineralization via a multidisciplinary approach. To do this, a petrographic, metallogenic, and geochemical characterization has been established in the different sectors of the Etéké deposit. The studied deposits display varied facies which are encased in granitoid. They are essentially formed of abundant granitoid, and amphibolite compared to the volcano-sedimentary formations. These rocks display magmatic textures, affected by metamorphism, and not sufficiently preserved. Based on our multidisciplinary approach, the studied samples collected from the core’s boreholes allowed us to decipher a volcanogenic and metamorphosed origin of the gold genesis.

References

[1]  Thiéblemont, D., Castaing, C., Billa, M., Bouton, P. and Preat, A. (2009) Notice explicative de la carte géologique et des ressources minérales de la République Gabonaise à 1/1000000. Programme Sysmin, 8, 384.
[2]  Toteu, S.F., Michard, A., Bertrand, J.M. and Rocci, G. (1987) U/pb Dating of Precambrian Rocks from Northern Cameroon, Orogenic Evolution and Chronology of the Pan-African Belt of Central Africa. Precambrian Research, 37, 71-87.
https://doi.org/10.1016/0301-9268(87)90040-4
[3]  Nedelec, A., Nsifa, E.N. and Martin, H. (1990) Major and Trace Element Geochemistry of the Archaean Ntem Plutonic Complex (South Cameroon): Petrogenesis and Crustal Evolution. Precambrian Research, 47, 35-50.
https://doi.org/10.1016/0301-9268(90)90029-P
[4]  De Waele, B., Johnson, S.P. and Pisarevsky, S.A. (2008) Palaeoproterozoic to Neoproterozoic Growth and Evolution of the Eastern Congo Craton: Its Role in the Rodinia Puzzle. Precambrian Research, 160, 127-141.
https://doi.org/10.1016/j.precamres.2007.04.020
[5]  De Wit, M.J. and Linol, B. (2015) Precambrian Basement of the Congo Basin and Its Flanking Terrains. In: De Wit, M. and Guillocheau, F., Eds., Geology and Resource Potential of the Congo Basin, Springer, Berlin, 19-37.
https://doi.org/10.1007/978-3-642-29482-2_2
[6]  Caen-Vachette, M., Vialette, Y. Bassot, J.P. and Vidal, P. (1988) Apport de la géochronologie isotopique à la connaissance de la géologie gabonaise. Chronique de la Recherche Minière, No. 491, 35-54.
[7]  Chevallier, L., Makanga, J.F. and Thomas, R.J. (2002) Notice explicative de la Carte géologique de la République Gabonaise a 1/1 000 000. Editions DGMG, Libreville.
[8]  Bouton, P., et al. (2009) Notice explicative de la carte géologique de la République du Gabon a 1/200 000, feuille Franceville-Boumango. Editions DGMG, Libreville.
[9]  Mayaga-Mikolo, F. (1996) Chronologie des evenements sedimentaires, magmatiques et tectonometamorphiques du precambrien d’afrique centrale occidentale (Gabon): Tectogenese ogooue et heritage archeen. BRGM, Orléans.
[10]  Feybesse, J.L., et al. (1998) The West Central African Belt: A Model of 2.5-2.0 Ga Accretion and Two-Phase Orogenic Evolution. Precambrian Research, 87, 161-216.
https://doi.org/10.1016/S0301-9268(97)00053-3
[11]  Bouchot, V. and Feybesse, J.L. (1996) Palaeoproterozoic Gold Mineralization of the Etéké Archaean Greenstone Belt (Gabon): Its Relation to the Eburnean Orogeny. Precambrian Research, 77, 143-159.
https://doi.org/10.1016/0301-9268(95)00047-X
[12]  Ledru, P., Johan, V., Milési, J.P. and Tegyey, M. (1994) Markers of the Last Stages of the Palaeoproterozoic Collision: Evidence for a 2 Ga Continent Involving Circum-South Atlantic Provinces. Precambrian Research, 69, 169-191.
https://doi.org/10.1016/0301-9268(94)90085-X
[13]  Lerouge, C., et al. (2006) Shrimp U-Pb Zircon Age Evidence for Paleoproterozoic Sedimentation and 2.05 Ga Syntectonic Plutonism in the Nyong Group, South-Western Cameroon: Consequences for the Eburnean-Transamazonian Belt of NE Brazil and Central Africa. Journal of African Earth Sciences, 44, 413-427.
https://doi.org/10.1016/j.jafrearsci.2005.11.010
[14]  Weber, F. (1968) Une série précambrienne du Gabon: Le Francevillien. Sédimentologie, géochimie, relations avec les gites minéraux associés. Sciences Géologiques, Bulletins et Mémoires, 28, 328 p.
[15]  Bourrel, J. and Pfifelmann, J.P. (1974) The Uraniferous Province of the Franceville Basin (Gabon Republic) Africa. Broken Hill Proprietary Co., Ltd., Shortland, 1-18.
[16]  Gauthier-Lafaye, F. (1986) Les gisements d’uranium du Gabon et les réacteurs d’Oklo. Modèle métallogénique de gites à fortes teneurs du Protérozoique inférieur. Sciences Géologiques, Bulletins et Mémoires, 78, 226 p.
[17]  Zhao, G., Cawood, P.A., Wilde, S.A. and Sun, M. (2002) Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59, 125-162.
https://doi.org/10.1016/S0012-8252(02)00073-9
[18]  Baud, L. (1954) Carte géologique de reconnaissance à 1/500 000. Feuille de Franceville-Est avec notice explicative. Bulletin de la Direction des mines et de la géologie de l’AEF, 221, 260-261.
[19]  Bouladon, J., Weber, F., Veysset, C. and Favre-Mercuret, R. (1965) Sur la situation géologique et le type métallogénique du gisement de manganèse de Moanda, près de Franceville (République Gabonaise). Sciences Géologiques, Bulletins et Mémoires, 18, 253-275.
https://doi.org/10.3406/sgeol.1965.1293
[20]  Leclerc, J. and Weber, F. (1980) Geology and Genesis of the Moanda Manganese Deposits, Republic of Gabon. The International Geological Congress, p. 782.
[21]  Weber, F. (1993) Les gisements latéritiques de manganèse. In: Paquet, H., Ed., Sédimentologie et géochimie de la surface: Colloque à la mémoire de Georges Millot, Académie des Sciences, Paris, 77-99.
[22]  Gauthier-Lafaye, F. and Weber, F. (2003) Natural Nuclear Fission Reactors: Time Constraints for Occurrence, and Their Relation to Uranium and Manganese Deposits and to the Evolution of the Atmosphere. Precambrian Research, 120, 81-100.
https://doi.org/10.1016/S0301-9268(02)00163-8
[23]  Maurin, J.C., et al. (1991) La chaine protérozoique ouest-congolienne et son avantpays au Congo: Nouvelles données géochronologiques et structurales, implications en Afrique centrale. Comptes Rendus de l’Académie des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre, 312, 1327-1334.
[24]  Mbina Mounguengui, M. and Guiraud, M. (2009) Neocomian to Early Aptian Syn-Rift Evolution of the Normal to Oblique-Rifted North Gabon Margin (Interior and N’Komi Basins). Marine and Petroleum Geology, 26, 1000-1017.
https://doi.org/10.1016/j.marpetgeo.2008.11.001
[25]  Seranne, M., Bruguier, O. and Moussavou, M. (2008) U-Pb Single Zircon Grain Dating of Present Fluvial and Cenozoic Aeolian Sediments from Gabon: Consequences on Sediment Provenance, Reworking, and Erosion Processes on the Equatorial West African Margin. Bulletin de la Société Géologique de France, 179, 29-40.
https://doi.org/10.2113/gssgfbull.179.1.29
[26]  Ledru, P., Eko N’Dong, J., Johan, V., Prian, J.P., Coste, B. and Haccard, D. (1989) Structural and Metamorphic Evolution of the Gabon Orogenic Belt: Collision Tectonics in the Lower Proterozoic? Precambrian Research, 44, 227-241.
https://doi.org/10.1016/0301-9268(89)90046-6
[27]  Guerrot, C., Feybesse, J. and Johan, V. (1994) Le série de Massima (Gabon): Une greenstone belt archéenne engagée dans la tectonique collisionnelle Protérozoique inférieur? Implications géotectoniques et paléogéographiques. Comptes Rendus de l’Académie des Sciences. Série 2, Sciences de la Terre et des Planètes, 318, 367-374.
[28]  Prian, J.P., Eko N’Dong, J. and Coste, B. (1991) Synthèse géologique et géochimique, potentialités minières du degré Carré Mouila: (Archéen et protérozoique du Gabon Central): Avec carte géologiqe à 1,200 000: Synthèse du district autifère d’Etéké. BRGM, Paris, 212 p.
[29]  Bas, M.J.L., Maitre, R.W.L., Streckeisen, A. and Zanettin, B. (1986) A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27, 745-750.
https://doi.org/10.1093/petrology/27.3.745
[30]  Cabanis, B. and Lecolle, M. (1989) Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes Rendus de l’Académie des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre, 309, 2023-2029.
[31]  Geringer, G.J. (1979) The Origin and Tectonic Setting of Amphibolites in Part of the Namaqua Metamorphic Belt, South Africa. South African Journal of Geology, 82, 287-303.
[32]  Hastie, A.R., Kerr, A.C., Pearce, J.A. and Mitchell, S.F. (2007) Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48, 2341-2357.
https://doi.org/10.1093/petrology/egm062
[33]  Wood, D.A. (1980) The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50, 11-30.
https://doi.org/10.1016/0012-821X(80)90116-8
[34]  Foley, S., Tiepolo, M. and Vannucci, R. (2002) Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417, 837-840.
https://doi.org/10.1038/nature00799
[35]  Rapp, R.P., Shimizu, N. and Norman, M.D. (2003) Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425, 605-609.
https://doi.org/10.1038/nature02031
[36]  Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D. (2005) An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79, 1-24.
https://doi.org/10.1016/j.lithos.2004.04.048
[37]  Wang, G.D., Wang, H.Y.C., Chen, H.X., Zhang, B., Zhang, Q. and Wu, C.M. (2017) Geochronology and Geochemistry of the TTG and Potassic Granite of the Taihua Complex, Mts. Huashan: Implications for Crustal Evolution of the Southern North China Craton. Precambrian Research, 288, 72-90.
https://doi.org/10.1016/j.precamres.2016.11.006
[38]  Middlemost, E.A.K. (1994) Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37, 215-224.
https://doi.org/10.1016/0012-8252(94)90029-9
[39]  Peccerillo, A. and Taylor, S.R. (1976) Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.
https://doi.org/10.1007/BF00384745
[40]  Maniar, P. and Piccoli, P. (1989) Tectonic Discrimination of Granitoids. GSA Bulletin, 5, 635-643.
https://doi.org/10.1130/0016-7606(1989)101%3C0635:TDOG%3E2.3.CO;2
https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/101/5/635/182281/Tectonic-discrimination-of-granitoids
[41]  Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956-983.
https://doi.org/10.1093/petrology/25.4.956

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133