全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Acute Triangulations of the Surface of Circular Cone

DOI: 10.4236/ojdm.2022.122002, PP. 17-27

Keywords: Acute Triangulation, Surface of Circular Cone, Gauss-Bonnet Formula

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we prove that the surface of any circular cone can be triangulated into 8 non-obtuse and 20 acute triangles. Furthermore, we also show that the bounds are both the best possible.

References

[1]  Gardner, M. (1960) Mathematical Games: A Fifth Collection of “Brain-Teasers”. Scientific American, 202, 150-154.
https://doi.org/10.1038/scientificamerican0260-150
[2]  Gardner, M. (1960) Mathematical Games: The Games and Puzzles of Lewis Carroll, and the Answers to February’s Problems. Scientific American, 202, 172-182.
https://doi.org/10.1038/scientificamerican0360-172
[3]  Gardner, M. (1995) New Mathematical Diversions. Mathematical Association of America, Washington DC.
[4]  Burago, Y.D. and Zalgaller, V.A. (1960) Polyhedral Embedding of a Net (Russian). Vestnik Leningrad University, 15, 66-80.
[5]  Cassidy, C. and Lord, G. (1980/1981) A Square Acutely Triangulated. Journal of Recreational Mathematic, 13, 263-268.
[6]  Maehara, H. (2001) On Acute Triangulations of Quadrilaterals. Japanese Conference on Discrete and Computational Geometry 2000, Vol. 2098, Tokyo, 22-25 November 2000, 237-354.
https://doi.org/10.1007/3-540-47738-1_22
[7]  Cavicchioli, M. (2012) Acute Triangulations of Convex Quadrilaterals. Discrete Applied Mathematics, 160, 1253-1256.
https://doi.org/10.1016/j.dam.2012.01.004
[8]  Yuan, L. (2010) Acute Triangulations of Trapezoids. Discrete Applied Mathematics, 158, 1121-1125.
https://doi.org/10.1016/j.dam.2010.02.008
[9]  Yuan, L. (2010) Acute Triangulations of Pentagons. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 53, 393-410.
[10]  Maehara, H. (2002) Acute Triangulations of Polygons. European Journal of Combinatorics, 23, 45-55.
https://doi.org/10.1006/eujc.2001.0531
[11]  Yuan, L. (2005) Acute Triangulations of Polygons. Discrete & Computational Geometry, 34, 697-706.
https://doi.org/10.1007/s00454-005-1188-9
[12]  Zamfirescu, C.T. (2013) Improved Bounds for Acute Triangulations of Convex Polygons. Utilitas Mathematica, 91, 71-79.
[13]  Hangan, T., Itoh, J. and Zamfirescu, T. (2000) Acute Triangulations. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 43, 279-285.
[14]  Itoh, J. and Zamfirescu, T. (2007) Acute Triangulations of the Regular Dodecahedral Surface. European Journal of Combinatorics, 28, 1072-1086.
https://doi.org/10.1016/j.ejc.2006.04.008
[15]  Itoh, J. and Zamfirescu, T. (2004) Acute Triangulations of the Regular Icosahedral Surface. Discrete & Computational Geometry, 31, 197-206.
https://doi.org/10.1007/s00454-003-0805-8
[16]  Jia, L., Yuan, L., Zamfirescu, C.T. and Zamfirescu, T.I. (2013) Balanced Triangulations. Discrete Mathematics, 313, 2178-2191.
https://doi.org/10.1016/j.disc.2013.05.017
[17]  Feng, X. and Yuan, L. (2011) Acute Triangulations of the Cuboctahedral Surface. International Conference on Computational Geometry, Graphs and Applications, Vol. 7033, Dalian, 3-6 November 2010, 73-83.
https://doi.org/10.1007/978-3-642-24983-9_8
[18]  Feng, X., Yuan, L. and Zamrescu, T. (2015) Acute Triangulations of Archimedean Surfaces. The Truncated Tetrahedron. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 58, 271-282.
[19]  Yuan, L. and Zamfirescu, T. (2007) Acute Triangulations of Flat Möbius strips. Discrete & Computational Geometry, 37, 671-676.
https://doi.org/10.1007/s00454-007-1312-0
[20]  Itoh, J. and Yuan, L. (2009) Acute Triangulations of Flat Tori. European Journal of Combinatorics, 30, 1-4.
https://doi.org/10.1016/j.ejc.2008.03.005
[21]  Zamfirescu, C.T. (2004) Acute Triangulations of the Double Triangle. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 47, 189-193.
[22]  Yuan, L. and Zamfirescu, C.T. (2007) Acute Triangulations of Double Quadrilaterals. Bollettino dell’Unione Matematica Italiana, 10-B, 933-938.
[23]  Yuan, L. and Zamfirescu, T. (2012) Acute Triangulations of Double Planar Convex Bodies. Publicationes Mathematicae Debrecen, 81, 121-126.
[24]  Bau, S. and Gagola III, S.M. (2018) Decomposition of Closed Orientable Geometric Surfaces into Acute Geodesic Triangles. Archiv der Mathematik, 110, 81-89.
https://doi.org/10.1007/s00013-017-1097-1
[25]  Saraf, S. (2009) Acute and Nonobtuse Triangulations of Polyhedral Surfaces. European Journal of Combinatorics, 30, 833-840.
https://doi.org/10.1016/j.ejc.2008.08.004
[26]  Maehara, H. (2011) On a Proper Acute Triangulation of a Polyhedral Surface. Discrete Mathematics, 311, 1903-1909.
https://doi.org/10.1016/j.disc.2011.05.012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133