全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同工况下井筒中油气水三相流型预测研究
Research on Multiphase Flow Pattern Prediction of Oil-Gas-Water Phase in the Wellbore under Different Conditions

DOI: 10.12677/JOGT.2022.441008, PP. 47-60

Keywords: 井筒,油气水多相流型,流型界限
Wellbore
, Flow Pattern of Oil-Gas-Water Phase, Flow Boundary

Full-Text   Cite this paper   Add to My Lib

Abstract:

为改善井筒中三相流流型划分不精确的实际状况,本文采用室内实验与理论研究相结合的方法针对不同倾角、气液比工况下井筒中油气水三相流型开展了详细研究。通过分析研究发现,不同工况下倾斜管及垂直管中油气水三相流流型总体上呈现气泡流、段塞流、搅动流、环雾流四种流型;基于此建立了油气水三相流流型划分综合有效模型,并明确了泡状流–段塞流、段塞流–搅动流、以及搅动流–环雾流的流型转换界限模型;通过实验数据检验该模型发现研究得出的不同倾角流型划分方法与实验结果吻合良好。本研究中油气水三相流流型划分综合方法可为井筒中油气水三相流流型划分及压力预测提供依据。
In order to improve the actual situation of inaccurate division of the three-phase flow pattern in the wellbore, this paper uses a combination of laboratory experiments and theoretical research to carry out a detailed study of the oil-gas-water three-phase flow pattern in the wellbore under different inclination angles and gas-liquid ratio conditions. Through analysis and research, it is found that the three-phase flow patterns of oil, gas and water in inclined pipes and vertical pipes generally present four flow patterns of bubble flow, slug flow, agitation flow and annular mist flow under different working conditions. A comprehensive and effective model for the division of phase flow and flow pattern was established, and the flow pattern transition boundary models of bubble flow-slug flow, slug flow-stirring flow, and agitation flow-annular mist flow were clarified. The obtained flow pattern division method with different inclination angles is in good agreement with the experimental results. The comprehensive method of the three-phase flow pattern division of oil, gas and water in this study can provide a basis for the flow pattern division and pressure prediction of the three-phase flow pattern of oil, gas and water in the wellbore.

References

[1]  张落玲, 王敏, 邓刚, 韩连福. 近水平小管径油水两相流流型实验[J]. 测井技术, 2020, 44(6): 528-533.
[2]  刘文生, 张磊, 康燕, 等. 油水两相流流型研究现状及展望[J]. 石油规划设计, 2020, 31(5): 16-21.
[3]  宁卫东, 张国良, 王英杰, 等. 不同倾角起伏管油气水三相流动特性数值模拟[J]. 电子测量技术, 2020, 43(14): 16-21.
[4]  尹宏轶. 垂直管道内油泡流聚并预测及流型识别方法研究[D]: [硕士学位论文]. 天津: 天津科技大学, 2020.
[5]  Dus, H. and Ros, N.C.J. (1963) Vertical Flow of Gas and Liquid Mixtures in Wells. Sixth World Petroleum Congress: Section 2, Frankfurt, 19-26 June 1963, Paper No. 22.
[6]  Aziz, K. and Govier, G.W. (1972) Pressure Drop in Wells Producing Oil and Gas. Journal of Canadian Petroleum Technology, 11, 22-29.
https://doi.org/10.2118/72-03-04
[7]  Hewitt, G.F. (1980) Measurement of Two-Phase Flow Parameters. Academic Press, London.
[8]  Spedding, P.L. and Nguyen, T.V. (1980) Regime Maps for Air-Water Two-Phase Flow. Chemical Engineering Science, 35, 779-793.
https://doi.org/10.1016/0009-2509(80)85062-7
[9]  Taitel, Y. and Dukle, A.E. (1976) A Model for Predicating Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow. AIChE Journal, 22, 47-55.
https://doi.org/10.1002/aic.690220105
[10]  Barnea, D.A. (1987) A Unified Model for Predicting Flow Pattern Transitions for Whole range of Pipe Inclinations. International Journal of Multiphase Flow, 13, 1-12.
https://doi.org/10.1016/0301-9322(87)90002-4
[11]  Hasan, A.R. and Kabir, C.S. (1988) A Study of Multipahse Flow Behavior in Vertical Wells. SPE Production Engineering, 3, 263-272.
https://doi.org/10.2118/15138-PA
[12]  荣峰. 倾斜管内油水两相流动特性研究[D]: [硕士学位论文]. 抚顺: 辽宁石油化工大学, 2019.
[13]  张亚辉, 米智楠, 吴仁智, 郭平安. 管径大小对水平圆管油水两相流的影响[J]. 流体传动与控制, 2017(2): 18-21.
[14]  边晓航, 刘军锋, 叶天明, 等. 大管径不同井斜油水两相流流型数值模拟[J]. 测井技术, 2016, 40(4): 399-403.
[15]  曹亚龙. 狭缝通道内气液两相流压降及流型可视化实验研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2021.
[16]  张赫铭, 李文昊, 何新林, 等. 不同管径水平管道气液两相流动数值模拟[J]. 排灌机械工程学报, 2021, 39(5): 488-494.
[17]  宋红伟, 郭海敏. 大斜度井中气液两相段塞流动力学模型分析[J]. 测井技术, 2016, 40(2): 127-131.
[18]  汪国琴, 赵方强. 水平管油气水三相流压降特性实验研究[J]. 油气田地面工程, 2016, 35(3): 27-30.
[19]  曹玉东, 姜晨薇. 气液两相流与油水两相流流型现状研究[J]. 石化技术, 2016, 23(1): 99.
[20]  宫敬, 刘德生. 水平管内油气水三相流动规律研究[J]. 石油化工高等学校学报, 2011, 24(2): 87-91.
[21]  Kaya, A.S., Sarica, C. and Brill, J.P. (1999) Comprehensive Mechanistic Model of Two-Phase in Deviated Wells. SPE Annual Technical Conference and Exhibition, Houston, TX, 3-6 October 1999, SPE 56522.
[22]  Rashidi, M., Sedaghat, A., Misbah, B., et al. (2021) Simulation of Wellbore Drilling Energy Saving of Nanofluids Using an Experimental Taylor-Couette Flow System. Journal of Petroleum Exploration and Production Technology, 11, 2963-2979.
https://doi.org/10.1007/s13202-021-01227-w
[23]  Taylor, G.I. (1923) Stability of a Viscous Liquid Contained between Two Rotating Cylinders. Proceedings of the Royal Society of London. Series A, 102, 541-542.
https://doi.org/10.1098/rspa.1923.0013
[24]  张佳沁, 刘军锋, 邢广俊, 等. 水平井斜井气液两相流型自动判别[J]. 科学技术创新, 2021(7): 154-155.
[25]  Turner, R.G., Hubbard, M.G. and Dukler, A.E. (1969) Analysis and Prediction of Minimum Flow Rate for the Continuous Removal of Liquids from Gas Wells. Journal of Petroleum Technology, 21, 1475-1482.
https://doi.org/10.2118/2198-PA
[26]  傅春梅, 邹一锋, 王雨生, 刘永辉. 川西须家河组气藏井筒流型判别技术应用[J]. 新疆石油天然气, 2017, 13(2): 79-82+5-6.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133