|
基于振动谐波理论的路基压实度在线检测方法与实验研究
|
Abstract:
针对现有人工检测路基压实度方法不连续,导致路基压实不均匀而引起的路面严重损坏的问题,根据路基压实过程中压路机与土基相互作用产生的振动谐波信号与路基压实度的关联性,研究了传统CCV路基压实度数学模型中各项参数所对应的频率区间,考虑了不同路基类型下压路机钢轮振动谐波信号中高幅值对应频率的分布,提出了基于振动谐波理论的自适应路基类型的CCV修正方法。以振动加速度传感器、NI板卡为硬件采集平台,在虚拟仪器LabVIEW中构建了路基压实度在线检测系统;以土槽实验室的黄土填料路基为实验对象,检测了路基在终压作用下的CCV修正值,并通过环刀法完成了该路段压实度的真实评定。实验结果表明:土基压实过程中,压路机钢轮上采集的振动加速度信号发生了畸变,其频域内信号的主要能量集中在半倍频、基频、1.5倍频、2倍频和4倍频处,且以此谐波分量修正的CCV值的310倍与环刀法压实度值基本对应;根据修正CCV值与环刀法压实度值关系建立的压实度线性模型相关系数为R2 = 0.86,满足现场压实质量评价要求,进一步验证了修正CCV评价方法的正确性。基于谐波法的自适应路基类型的压实度在线检测方法为路基压实施工过程中压实度的实时连续检测提供了理论依据。
Existing methods for manually detecting the degree of roadbed compaction are not continuous, resulting in serious road damage caused by uneven roadbed compaction degree. According to the correlation between the vibration harmonic signal generated by the action of the roller and the soil foundation during the roadbed compaction process and the degree of roadbed compaction degree, the frequency range corresponding to each parameter in the traditional CCV roadbed compaction mathematical model is studied, and the differences are considered, and the distribution of the high amplitude corresponding to the frequency of the vibration harmonic signal of the roller drum under different roadbed types is considered. Therefore, an adaptive subgrade type CCV correction method is proposed based on the vibration harmonic theory. With the vibration acceleration sensor and NI board as the hardware acquisition platform, an online subgrade compaction detection system is constructed in the virtual instrument LabVIEW. Taking the loess-filled roadbed in the soil trough laboratory as the experimental object, the CCV correction value of the roadbed compaction degree under the action of the final pressure was detected, and the roadbed compactness was evaluated by the ring knife method. The result showed that: In the process of soil foundation compaction, the vibration signal of the roller was distorted, and the main energy was concentrated at half frequency, fundamental frequency, 1.5 frequency, 2 frequency and 4 frequency. The 310 times the CCV value corrected by the harmonic component basically corresponds to the ring knife compaction value. The correlation coefficient of the linear model of compaction established based on the corrected CCV value and the ring knife compaction value is R2 = 0.86, which meets the requirements of on-site compaction quality evaluation and further verifies the correctness of the revised CCV evaluation method. The online detection method of subgrade compaction based on the harmonic method provides a theoretical basis for the real-time
[1] | Wang, T.D., Hu, L.Q., Pan, X.D., et al. (2020) Effect of the Compactness on the Texture and Friction of Asphalt Concrete Intended for Wearing Course of the Road Pavement. Coatings, 10, 192.
https://doi.org/10.3390/coatings10020192 |
[2] | Qian, G.P., Hu, K.K., Gong, X.B., et al. (2019) Real-Time Flow Behavior of Hot Mix Asphalt (HMA) Compaction Based on Rheological Constitutive Theory. Materials, 12, 1711. https://doi.org/10.3390/ma12101711 |
[3] | 黄志福, 梁乃兴, 赵毅, 等. 路面压实度自动连续检测技术[J]. 长安大学学报(自然科学版), 2015, 35(6): 24-32+55. |
[4] | Mackova, J., Zurkova, K., Sroller, V., et al. (2015) In Vitro Generation of CMV Specific T-Lymphocytes. Journal of Clinical Virology, 70, S116. https://doi.org/10.1016/j.jcv.2015.07.269 |
[5] | Nie, Z.H. (2011) Comparison Experimental Study on Subgrade Compaction Quality Test Methods. Applied Mechanics and Materials, 71-78, 4679-4684. https://doi.org/10.4028/www.scientific.net/AMM.71-78.4679 |
[6] | Meehan, C.L., Cacciola, D.V., Tehrani, F.S., et al. (2017) Assessing Soil Compaction Using Continuous Compaction Control and Location-Specific in Situ Tests. Automation in Construction, 73, 31-44.
https://doi.org/10.1016/j.autcon.2016.08.017 |
[7] | 张忠强. 基于CMV值的路基智能压实评价试验分析研究[D]: [硕士学位论文]. 保定: 河北大学, 2017. |
[8] | 崔浩. 基于智能压实技术对填筑体路基压实度试验研究[D]: [硕士学位论文]. 保定: 河北大学, 2017. |
[9] | 唐庆永, 李强, 聂志红. 土石混填路基连续压实质量检验研究[J]. 武汉大学学报(工学版), 2020, 53(7): 605-610. |
[10] | 张兵, 唐庆永. 土石混填路基连续压实质量检测[J]. 水利水电技术, 2019, 50(S1): 87-91. |
[11] | Zhu, X.Y., Bai, S.J., Xue, G.P., et al. (2018) Assessment of Compaction Quality of Multi-Layer Pavement Structure Based on Intelligent Compaction Technology. Construction and Building Materials, 161, 316-329.
https://doi.org/10.1016/j.conbuildmat.2017.11.139 |
[12] | 林通. 基于云服务的振动压路机压实过程作业质量监控系统研究[D]: [硕士学位论文]. 西安: 长安大学, 2018. |
[13] | Cao, Y., Zhou, B., Li, S., et al. (2020) Real-Time Detection Technology of Compaction Degree. Journal of Chongqing Jiaotong University. Natural Science, 39, 80-85, 97. |
[14] | Pistrol, J., Villwock, S., Vlkel, W., et al. (2016) Continuous Compaction Control (CCC) with Oscillating Rollers. Procedia Engineering, 143, 514-521. https://doi.org/10.1016/j.proeng.2016.06.065 |
[15] | Cai, H., Kuczek, T., Dunston, P.S. and Li, S. (2017) Correlating Intelligent Compaction Data to in Situ Soil Compaction Quality Measurements. Journal of Construction Engineering and Management, 143.
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001333 |
[16] | Ling, J.M., Lin, S., Qian, J.S., et al. (2018) Continuous Compaction Control Technology for Granite Residual Subgrade Compaction. Journal of Materials in Civil Engineering, 30.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002522 |
[17] | Jia, T., He, T.J., Qian, Z.D., et al. (2019) An Improved Low-Cost Continuous Compaction Detection Method for the Construction of Asphalt Pavement. Advances in Civil Engineering, 2019, Article ID: 4528230.
https://doi.org/10.1155/2019/4528230 |
[18] | 郭华杰, 江辉煌, 高明显, 等. 筑坝细粒填料的含水率对连续压实指标的影响[J]. 水力发电学报, 2021, 40(4): 97-105. |
[19] | 黄国卿, 严筱, 杨永刚, 等. 智能压实间接指标试验分析与压实度预测[J]. 中外公路, 2020, 40(2): 24-28. |
[20] | 吴龙梁. 基于能量耗散的路基连续压实控制技术研究[D]: [博士学位论文]. 北京: 中国铁道科学研究院, 2020. |
[21] | 杨杰. 压实度在线检测技术在垂直振动压路机上的应用研究[D]: [硕士学位论文]. 西安: 长安大学, 2019. |
[22] | 马丽英, 梁乃兴, 曹源文, 等. 路基压实度与振动轮加速度的关系研究[J]. 重庆交通大学学报: 自然科学版, 2017, 36(3): 48-53. |