全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

盐渍土地区钢筋混凝土结构寿命预测模型
Life Prediction Model of Reinforced Concrete Structure in Saline Soil Area

DOI: 10.12677/HJCE.2022.113044, PP. 407-418

Keywords: 钢筋混凝土,氯离子,寿命预测,半电池电位法
Reinforced Concrete
, The Chloride Ion, Life Prediction, Half Cell Potentiometric Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了建立盐渍土地区钢筋混凝土结构的寿命预测模型,将在盐渍土地区埋置混凝土试验桩并于3年后对试验桩表面氯离子浓度及钢筋锈蚀程度进行测试,通过建立氯离子渗透模型以预测钢筋锈蚀所需时间,并基于该渗透模型及混凝土构件状态预测钢筋锈蚀阶段及混凝土裂缝发展阶段所需时间。结果表明,混凝土水灰比、外掺料及外界环境会对氯离子扩散系数造成显著影响,从而影响钢筋锈蚀临界时间;混凝土保护层厚度及水灰比也会影响构件开裂时间及裂缝的发展速度。
In order to establish the life prediction model of reinforced concrete structures in the saline soil area, we will bury concrete test piles in the saline soil area and test the chloride ion concentration on the surface of test piles and the corrosion degree of steel bars three years later. The chloride ion penetration model is established to predict the corrosion time of steel bars. Based on the seepage model and the state of concrete members, the time required for the corrosion stage of reinforcement and the development stage of concrete cracks are predicted. The results show that the water-cement ratio of concrete, the external admixture and the external environment have a significant influence on the chloride ion diffusion coefficient, thus affecting the critical time of steel corrosion. The thickness of concrete protective layer and water cement ratio also affect the cracking time and crack development speed.

References

[1]  Xia, J., Li, T., Fang, J.-X. and Jin, W.-L. (2019) Numerical Simulation of Steel Corrosion in Chloride Contaminated Concrete. Construction and Building Materials, 228, Article ID: 116745.
https://doi.org/10.1016/j.conbuildmat.2019.116745
[2]  赵翔宇. 基于氯离子渗透的混凝土结构耐久性研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2011.
[3]  Pradhan, B. and Bhattacharjee, B. (2009) Half-Cell Potential as an Indicator of Chloride-Induced Rebar Corrosion Initiation in RC. Journal of Materials in Civil Engineering, 21, 543-552.
https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(543)
[4]  王献国, 贾东新. 漳河大桥桩基础综合检测[J]. 公路, 2002(9): 46-47.
[5]  Xi, Y.P. and Ba?ant, Z.P. (1999) Modeling Chloride Penetration in Saturated Concrete. Journal of Materials in Civil Engineering, 11, 58-65.
https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(58)
[6]  杨绿峰, 周明, 陈正, 文涛. 基于强度和抗氯盐耐久性指标的混凝土配合比设计及试验研究[J]. 土木工程学报, 2016, 49(12): 65-74.
[7]  Tang, L. and Gulikers, J. (2007) On the Mathematics of Time-Dependent Apparent Chloride Diffusion Coefficient in Concrete. Cement and Concrete Research, 37, 589-595.
https://doi.org/10.1016/j.cemconres.2007.01.006
[8]  Niu, D.T., et al. (2016) Chloride Ion Diffusion Model of the Concrete under Multiple Factors. Materials Science Forum, 866, 43-48.
[9]  Hall, C. (1993) Water Sorptivity of Mortars and Concrete—A Review. Magazine of Concrete Research, 419, 51-61.
https://doi.org/10.1680/macr.1989.41.147.51
[10]  郭冬梅, 项贻强, 程坤, 林士旭, 李威. 沿海混凝土桥氯离子扩散修正模型及其应用[J]. 中国公路学报, 2012, 25(5): 89-94.
[11]  Vu, K. and Stewart, M.G. (2007) Structural Reliability of Concrete Bridges Including Improved Chloride-Induced Corrosion Models. Building Technique Development, 22, 313-333.
https://doi.org/10.1016/S0167-4730(00)00018-7
[12]  王永东. 氯盐侵蚀引起的钢筋锈蚀对地下结构耐久性影响的研究[D]: [硕士学位论文]. 上海: 同济大学, 2008.
[13]  Andrade, C., Alonso, C. and Molina, M.J. (1993) Cover Cracking as a Function of Bar Corrosion: Part I. Experimental Test. Materials & Strictures, 26, 453-464.
https://doi.org/10.1007/BF02472805
[14]  陆春华, 金伟良, 刘荣桂. 钢腐蚀和覆盖开裂的船用钢筋混凝土的概率寿命评估[J]. 中国海洋工程: 英文版, 2011, 25(2): 305-318.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133